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P LOT Conceptual Problem Set Differential Equations

1 Foundations to this Set

Welcome to the ODEs PILOT. Whether you have previously taken any math class or not at Hopkins, it
would be interesting to get into the foundations of mathematical components.

This problem set is entirely voluntary, you are not expected to know most of these contents for this class.
However, if you are looking for better conceptual understanding on the materials, or wishing to see how
many of the concepts develop in other areas of mathematics, you are definitely encouraged to attempt on
this problem set. In general, the pace of this set should roughly align with the current design of the ODE
course. To catch up with the pace, try to attempt around 2 exercises each week.

Right now, without many foundations into the class yet, let put our attention to some pre-requisites for
this class, namely some pre-calculus and elementary calculus stuffs.

Definition. Linear Maps: For any vector spaces V, W, a linear map T : V → W satisfies that:

1. T(u + v) = T(u) + T(v) for all u, v ∈ V;

2. T(λu) = λT(u) for all λ ∈ F (where F is the field for the vector field) and u ∈ V.

In mathematical logics, we always want to show something works rather than from intuitions. With use
of logics, try on the following problem.

Exercise 1. Let T : V → W be a linear map where V and W are vector fields, prove or disprove the
following:

(a) T(0V) = 0W where 0V is the additive identity in V and 0W is the additive identity in W.

(b) Let f : V → W be a map, if f (0V) = 0W , then f is linear.

The above problem is a prove/disprove question. Hopefully, your intuitions are correct for the above
question. However, we can no longer believe in our intuitions all the time, for example, accounting the
following example.

Example. Definitionine a function f : (0, 1) → R as follows:

f (x) =

0, if x is irrational,

1
n

, if x = m
n , where m, n ∈ Z+ and gcd (m, n) = 1.

Determine if f is continuous at irrational points, and if f is continuous at rational points.
From our intuition the answers should be not continuous at both scenarios, but this is not the case, since
by the definition of continuity, f is continuous at irrational points but not at rational points. This is a great
example from Real Analysis and could always trick many people on intuitions.
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Nonetheless, if you consider a continuous map f from R to R, then satisfying condition 2 would sufficient
to prove that f is linear.

Back to mathematics in our scope, now let’s have a brief review on integration by parts.

Exercise 2. Let f , g be continuous functions from R to R, show that:∫
f (x)g′(x)dx = f (x)g(x)−

∫
f ′(x)g(x)dx

using the Fundamental Theorem of Calculus.

Spoiler alert, integration by parts would be one of the most intensive calculation in this course.

2 Wronskian, First Encounter

During the class, you might have been introduced for using Wronskian to determine if two functions are
linearly independent. Let’s explore deeper into this concept.

Definition. Linear Independence: Let f1, f2, · · · , fn be a sequence of functions. The sequence of functions
are linearly independent if:

k1 f1 + k2 f2 + · · ·+ kn fn = 0 =⇒ k1 = k2 = · · · = kn = 0,

while the functions are linearly dependent if they are not linearly independent.

Exercise 3. Explore the role of 0 in linear Independence. Here consider 0 as a function that maps every
input to 0.

(a) Show that f = 0 is not linearly independent.

(b) Show that if a series of functions contains fk = 0, then the series of functions are not linearly
independent.

Diligent readers might have noticed that we have not mentioned if the 0 function is well-defined, in partic-
ular, we do not know if 0 is contained in the space of the co-domain. However, this problem should be
trivial as most predominant algebraic structures in Modern Algebra contains 0, whether for groups, rings,
and fields, or for R-modules which contains a specific example of vector space which most readers should
have familiarity with.

Definition. Wronskian for 2 functions: The Wronskian for functions f1 and f2 is defined to be:

W[ f1, f2] := det

(
f1 f2

f ′1 f ′2

)
= f1 f ′2 − f2 f ′1
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Exercise 4. Suppose f1 and f2 are non-zero. Convince (or prove to) yourself with the following statement:

f1 and f2 are linearly dependent if and only if there exists some k ∈ R such that f1 = k f2.

Now, we have established a new way of expressing linear dependence with another approach.

Exercise 5. With the proceedings, prove that f1 and f2 are linearly dependent if and only if W[ f1, f2] = 0.
Remark. For this question, just regard determinant as an operator for calculation, and a non-zero determi-
nant implies the linear map being invertible.

Now have we concluded that Wronskian is valid for 2 functions, however, we want to aim for a more
generalized case.

Exercise 6. Let f1, f2, f3, · · · , fn be continuous and differentiable functions. If the Wronskian of this set of
functions is not identically zero then the set of functions is linearly independent.

For this question, you may assume that a non-zero determinant is equivalent to invertible. We will be
exploring that further in the future.

On the other hand, as you explore deeper in Real Analysis, you will be familiarized with more classes
of functions. For example, for functions that are square integrable (L2(R)), it forms a good structure, or
Hilbert Space. In particular, in L2([−L, L]) space, a basis could be consisted of sine and cosine curves. If
you find this interesting, please refer to Fourier Series.

3 Exactness and Mixed Partials

When contacting exactness, you might be wondering why iterated partials are equal, and why we verify
the mixed partial when checking the exactness condition. Let’s explore such topic now.

Theorem. Equality of Mixed Partials: If f (x, y) is of class C2 (twice continuously differentiable), then the
mixed partial derivatives are equal:

∂2 f
∂x∂y

=
∂2 f

∂y∂x
.

Exercise 7. In considering this problem, define a function as follows:

S(∆x, ∆y) := f (x0 + ∆x, y0 + ∆y)− f (x0 + ∆x, y0)− f (x0, y0 + ∆y) + f (x0, y0).

Assume that ∆x and ∆y are positive, draw a diagram representing x and y in R2.
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Then we can hold y0 and ∆y fixed, define a function g as follows:

g(x) := f (x, y0 + ∆y)− f (x, y0).

Exercise 8. Rewrite S(∆x, ∆y) in terms of the definition of g, and variables x0 with ∆x.

Theorem. Mean Value Theorem: If f is a continuous function on the closed interval [a, b] and differen-
tiable on the open interval (a, b), then there exists a point c in (a, b) such that the tangent at c is parallel to
the secant line through the endpoints

(
a, f (a)

)
and

(
b, f (b)

)
, that is,

f ′(c) =
f (b)− f (a)

b − a
.

Exercise 9. With the mean-value theorem, prove that there exists some x0 < x̄ < x0 + ∆x satisfying that
g(x0 + ∆x)− g(x0). Then, express S(∆x, ∆y) in another way.

After showing the case for x̄, we have a very similar case for ȳ in demonstrating this proof. Convince
yourself that it is correct.

Exercise 10. Prove the theorem on equality if mixed partials by using definition of limits.

Now, we have shown that mixed partials should be equal for functions that are “good” enough. For sure,
we want to make our partial derivatives good so we can do the reverse process to find our target function.

4 Euler’s Formula

With no doubt, Euler’s Formula is considered as one of the prettiest formula in mathematics, as it combines
integer 1, with π and e as transcendental numbers, and with i as imaginary number to 0, as of follows:

eπi + 1 = 0.

More generally, Euler’s formula writes e to an imaginary power as of sin and cos, such as:

eθi = cos θ + i sin θ.

The conventional way to show Euler’s Formula is through the power series. Recall that a Taylor Approxi-
mation of f (x) is:

∞

∑
n=0

f (n)(a)
n!

(x − a)n.

Page 4



P LOT Conceptual Problem Set Differential Equations

Exercise 11. Consider the power series of eiθ , sin θ, and cos θ, show that Euler’s Formula is valid.
Remark. Since we have not constructed a clear definition of sequences and justifying the rearrangement of
terms, this proof is not entirely rigorous.

Alternatively, there is another proof by using the product rule of derivatives.

Exercise 12. Consider a function f , defined as follows:

f (θ) :=
cos θ + i sin θ

eiθ = e−iθ (cos θ + i sin θ),

show that f is a constant function, then conclude Euler’s Formula.

Now have we explored Euler’s formula. One significant remark is that Euler’s formula exhibits a periodic
patter, which greatly fits the cores of ODEs.

Exercise 13. Given a function f : R → C defined as:

f (x) := exi.

Decompose f = i f ◦ f̃ ◦ π∼, where π∼ is surjective, i f is injective, and f̃ is bijective, as of follows:

R X Y C,π∼

f

∼
f̃ i f

Further, you can consider π∼ as a projection to an equivalent class, f̃ as a modification of f , and i f as a
map from the image to the co-domain. Such decomposition is called a “Canonical Decomposition.”
Remark. For the simplicity of this question, consider X as an interval of R and Y geometrically in C.

While the above inquiry shows a canonical way of decomposition (namely, the Canonical Decomposition in
Modern Algebra), this reveals some topological relationship, as described follows:

R S1

R/τZ

ei•

π∼ ∼

Here, S1 (you can consider this a disk, i.e. boundary of ball in R2) is covering space of R, which can
be corresponded to R/τZ, known as the partition of R such that each equivalence class is consisted of
elements in form x + kτ where 0 ≤ x < τ and k ∈ Z.
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Exercise 14. Based on the definition of R/τZ.

(a) Find τ, then explain how it corresponds to the interval you have made in the preceding problem.

(b) Consider the equation xn = 1 where n ∈ Z. Use the concept of partition to find the new periodicity
τ, i.e., what are the differences in angle between the solutions.

Now, you can see that the Euler formula can be interpreted as a map (or morphism) between some struc-
tures, and you can see some sort of equal relationship (known as isomorphism). If you find such topic
interesting, please refer to some Topology contents to find a good definition on what are considered “same”
in mathematics.

5 Eigenspace

Most likely in most ODE courses, you might be introduced to eigenvectors and eigenvalues purely by
calculation approaches, but most students fails to know that eigenspace means in linear algebra. Alterna-
tively, we will attempt to understand the concept of eigenspace through another approach.

To approach the purest understanding of eigenspace, let’s forget everything about determinants.

Definition. Eigenvalue and Eigenvectors: Consider for a linear map T that maps V as a vector space to
itself, denoted T ∈ L(V), the eigenvalue of T are values λ ∈ F (where F denotes the field) such that there
exists some v ∈ V such that:

T(v) = λx,

and the corresponded elements (not necessarily vector) v ∈ V are the eigenvectors.

Exercise 15. Consider the linear map T : R2 → R2 defined as reflecting each point (x, y) ∈ R2 by the axis
x = y, as of follows:

x

y

x = y

x

x′

(a) What are the eigenvalues and eigenvectors of T.

(b) Can you think of a way to represent T as a matrix? Feel free to check the eigenvalues and eigenvectors
for the matrix align with what you get in part (a).
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Hence, at this moment, you should really realize that determinant is not a definition of eigenvectors, but
rather a tool. Even further, you would notice the exact opposite construction.

However, for now, let’s consider another case of eigenvalues.

Exercise 16. Consider a linear map T ∈ L(V) with a series of eigenvalues.

(a) Give a specific example of linear map T that has 0 as an eigenvalue.

(b) Now, prove that the operator T is invertible if and only if 0 is not an eigenvalue of T.

From here, the reader might find some connections with determinant being 0 and have 0 as an eigenvalue.
Now, we can define determinant as follows:
Definition. Eigenvalue and Eigenvectors: The determinant of a linear map T ∈ L(V), denoted det T,
is the product of the eigenvalues in the complex field with each eigenvalue repeated according to its
multiplicity.

Exercise 17. Prove that invertible is equivalent to nonzero determinant.

Therefore, we have shown that a non-zero determinant implies an operator being invertible. Now, we
want to build further connections between the determinant of a linear map T with its eigenvalues by
finding the characteristic polynomial.

Exercise 18. Suppose T ∈ L(V), show that the characteristic polynomial of T equals det(zI − T).

Readers should immediately realize that what we have get all the way through is another approach to
“redefine” determinants. However, you should see that the determinant is one of the most straightforward
way to approach the eigenvalues.

6 Wronskian, Second Encounter

Since we have now had a better view on determinants, it is a great time for us to review on the tech-
niques of Wronskian. It is a great opportunity for us to view determinants of matrices through another
construction. Some readers might notice that I “stole” this title from a famous algebra textbook – Algebra: Chapter
0. Despite all of these, let’s reprise the information of Wronskian to learn the contents again.

Thus, prior to seeing the construction for matrices, we also want to explore the permutations, with a defi-
nition of the “sgn” function.
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Definition. Permutation: A permutation of n, denoted perm n, is a list (m1, m2, · · · , mn) that contains each
of the numbers 1, 2, · · · , n exactly once. To understand, you can interpret this as mapping each element in
the list to the later one, while the last one is mapped to the first.

Exercise 19. For the simplicity of this question, with a permutation written as σ = (a, b), we can
understand that as σ(a) = b and σ(b) = a.

(a) Prove that (1, 2, 3) = (1, 2)(1, 3) holds.

(b) Given any permutation as (m1, m2, · · · , mn) ∈ perm n, write it in the form as only permutation of
two elements. Specifically, you should generalize the previous part to any mi.

The reader shall have noticed a fundamental discrepancy between some permutations. For instance, we
can decompose as follows:

(1, 2) = (1, 2)(1, 3)(3, 1),

(1, 2, 3) = (1, 2)(1, 3),

(1, 2, 3, 4) = (1, 2)(1, 3)(1, 4).

Specifically, some permutations can only be “decomposed” into even numbers of single permutations
(called transposition), while the others can only be “decomposed” into odd numbers of single permuta-
tions. One should found the parity here suspicious, thus shall lead to our definition of the sign function.

Definition. Sign Function: If a permutation σ can be decomposed into odd number of transposition, it
is odd, written as sgn(σ) = −1. If it can be decomposed into even number of transposition, it is even,
written as sgn(σ) = 1.

Exercise 20. Prove that even permutations are “closed” under composition, that it, if you compose two
even permutations, their composition shall still be even.
If fact, you can also show that composition of odd permutations is not closed, and this corresponds to the parity of
addition.

After defining our sign function, we shall finally see the construction of determinant for a matrix. Given

a matrix A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

, its determinant is det(A) = ∑
σ∈perm n

sgn(σ)aσ(1),1 · · · aσ(n), n.

Exercise 21. With this definition, the sign function is determined by the number of transpositions in
σ, argue that we may remove the row and column of aσ(1),1 so it give rise to a recursive definition of
determinants.
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If you get really interested into mathematics, you could know that perm n is some group structure, known
as the cyclic group, in which the elements rotates inside each permutation. The group theory definitely
brings many nice properties, while you are encouraged to explore this on yourself later on.

Maybe this brings us too much away from Wronskian, which is the topic of this section. However, you
might recall the Variation of Parameter for higher order linear differential equations, as the particular
solution is:

yp = y1(t)
∫ W1g

W
dt + y2(t)

∫ W2g
W

dt + · · ·+ yn(t)
∫ Wng

W
dt,

where Wi is defined to be the Wronskian with the i-th row alternated into


0
...
0
1

.

Exercise 22. With the recursive definition of determinants, we now want to tackle how Wi is valid in
terms of its definition.

(a) Prove that interchanging two columns of a matrix makes the determinant into its opposite number
(in terms of addition, known as the additive inverse).

(b) By applying part (a), conceptually describe the processes of each Wi based on parity.

Also, you should now reconsider the variation of parameter with second order linear differential equa-
tions. Hopefully, you should be able to see why there is an extra negative sign for the variation of
parameters in that case.

7 Laplace Transformations

At this moment of class, you should be introduced to Laplace Transformation. However, we are going
to explore about it through a different perspective. Namely, to remind you what Laplace Transformation is:

Definition. Laplace Transformation: For a function f (x), its Laplace transformation is defined as:

L{ f }(s) = F(s) =
∫ ∞

0
e−st f (t) dt.

First, let us review about some properties of Laplace Transformation:

Exercise 23. Let f (x) and g(x) be “good” functions, and let a be a real constant, show that:

(a) L{ f (x) + g(x)} = L{ f (x)}+ L{g(x)}.

(b) L{a f (x)} = aL{ f (x)}.
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In particular, L is a linear operator if it aligns with the above arguments.

Note that we used “good” here, as we genially want to have e−st f (t) to be Riemann-integrable. Here,
the “good” does not imply any sort of continuity, so if we imagine f (x) as a “good” function such that
f (x) ̸= 0 for all x ∈ R, and we define g(x) by the follows:

g(x) =

 f (x), x ̸= 0,

0, x = 0.

If we consider this function, it is immediate to observe that L{ f } = L{g}. Intuitively, we know that a
variation of a single point does not matter.

Exercise 24. Given an example of f (x) and g(x) from the above argument. Moreover, conclude that for
any F(s) that has a Laplace inverse, there must be infinitely (or countably) many inverses.

This marks the end of the extra sheets for ODEs PILOT. We hope that you have encountered something
fun and might observed some interests in other areas of mathematics.
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