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1. Find the general solution for y = y(t):

y′ + 3y = t + e−2t,

then, describe the behavior of the solution as t→ ∞.

Solution:
Here, one could note that this differential equation is not separable but in the form of integrating
factor problem, then we find the integrating factor as:

µ(t) = exp
(∫ t

0
3ds
)
= exp(3t).

By multiplying both sides with exp(3t), we obtain the equation:

y′e3t + 3ye3t = te3t + e−2te3t.

Clearly, we observe that the left hand side is the derivative after product rule for ye3t and the right
hand side can be simplified as:

d
dt
[ye3t] = te3t + et.

Therefore, we have turned this into an integration problem, so we do the respective integrations,
giving us that:

ye3t =
∫

te3tdt +
∫

etdt

=
te3t

3
−
∫ 1

3
e3tdt + et + C

=
te3t

3
− e3t

9
+ et + C.

Eventually, we divide both sides by e3t to obtain that:

y(t) =
t
3
− 1

9
+ e−2t + Ce−3t .

Here, as t→ ∞, y(t) diverges to +∞ due to the term t/3.
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2. Given an initial value problem: 
dy
dt
− 3

2
y = 3t + 2et,

y(0) = y0.

(a) Find the integrating factor µ(t).

(b) Solve for the particular solution for the initial value problem.

(c) Discuss the behavior of the solution as t→ ∞ for different cases of y0.

Solution:

(a) As instructed, we look for the integrating factor as:

µ(t) = exp
(∫ t

0
−3

2
ds
)
= exp

(
−3

2
t
)

.

(b) With the integrating factor, we multiply both sides by µ(t) to obtain that:

y′e−3t/2 − 3
2

ye−3t/2 = 3te−3t/2 + 2ete−3t/2.

Clearly, we observe that the left hand side is the derivative after product rule for ye−3t/2 and
the right hand side can be simplified as:

d
dt

[
ye−3t/2

]
= 3te−3t/2 + 2e−t/2.

Therefore, we have turned this into an integration problem, so we do the respective integrations,
giving us that:

ye−3t/2 =
∫

3te−3t/2dt +
∫

2e−t/2dt

= −2te−3t/2 + 2
∫

e−3t/2dt− 4r−t/2 + C

= −2te−3t/2 − 4
3

e−3t/2 − 4r−t/2 + C.

Then, we divide both sides by e−3t/2 to get the general solution:

y(t) = −2t− 4
3
− 4et + Ce3t/2.

Given the initial condition, we have that:

y0 = 0− 4
3
− 4 + C,

which implies C = 16/3 + y0, leading to the particular solution that:

y(t) = −2t− 4
3
− 4et +

(
16
3

+ y0

)
e3t/2 .

(c) We observe that:

lim
t→∞

y(t) = lim
t→∞

[
−2t− 4

3
− 4et +

(
16
3

+ y0

)
e3t/2

]
.

Note that the important terms are et and e3t/2, we need to care the critical value −16/3:

• when y0 > −16/3, y(t)→ ∞ when t→ ∞ ,

• when y0 ≤ −16/3, y(t)→ −∞ when t→ ∞ .
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3. Suppose f (x) is non-zero, let an initial value problem be:
1− y

x
· dy

dx
=

f (x)
1 + y

,

y(0) = 0.

(a) Show that the differential equation is not linear.

For the next two questions, suppose f (x) = tan x.

(b) State, without justification, the open interval(s) in which f (x) is continuous.

(c)∗ Show that there exists some δ > 0 such that there exists a unique solution y(x) for x ∈ (−δ, δ).

Now, suppose that f (x) is some function, not necessarily continuous.

(d)∗∗ Suppose that the condition in (c) does not hold, give three examples in which f (x) could be.

Solution:

(a) Proof. We can write the equation as:

F(x, y, y′) := y′ − x f (x)
(y + 1)(y− 1)

= 0,

Note that:
F
(

x, (y + 1), (y + 1)′
)
= y′ − x f (x)

(y + 2)y
̸= 1,

so the function is non-linear.

(b) Here, we should consider that:

f (x) = tan x =
sin x
cos x

,

so the discontinuities are at when cos x = 0, that is:

x ∈
{
(2k + 1)π

2
: k ∈ Z

}
.

Hence, we have the intervals in which f (x) being continuous as:{(
(2k− 1)π

2
,
(2k + 1)π

2

)
: k ∈ Z

}
.

(c) Proof. Here, we want to write our equation in the standard form and obtain that:

y′ := f (t, y) =
x tan x

(y + 1)(y− 1)
,

∂ f (t, y)
∂y

= − x tan x · 2y
(y2 − 1)2 .

Clear, we note the discontinuities of y at y = ±1, and x demonstrated as above, thus we can
form a rectangle Q = (−π/2, π/2)× (−1, 1) in which the initial condition (0, 0) ∈ Q and f (t, y)
with ∂y f (t, y) are continuous on the interval. By the existence and uniqueness theorem for non-linear
case, we know that there exists some δ such that there is a unique solution for −δ < x < δ.

(d) If the condition in (c) does not hold, by contraposition, this implies that continuity must fail,
i.e., x f (x) must be discontinuous at x = 0 . Hence, some examples could be:

f (x) =
1
x2 , or log x, or csc x, or χ{0}(x) etc.
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4. An autonomous differential equation is given as follows:
dy
dt

= 4y3 − 12y2 + 9y− 2 where t ≥ 0 and y ≥ 0.

Draw a phase portrait and sketch a few solutions with different initial conditions.

Solution:
Recall from Pre-Calculus (or Modern Algebra) the following Rational root test:
Theorem: Rational Root Test. Let the polynomial:

anxn + an−1xn−1 + · · ·+ a0 = 0

have integer coefficients ai ∈ Z and a0, an ̸= 0, then any rational root r = p/q such that p, q ∈ Z and
gcd(p, q) = 1 satisfies that p|a0 and q|an. ⌟
From the theorem, we can note that if the equation has a rational root, it must be one of:

r = ±1,±2,±1
2

,±1
4

.

By plugging in, one should notice that y = 2 is a root (one might also notice 1/2 is a root as well,
but we will get the step slowly), so we can apply the long division (dividing y− 2) to obtain that:

4y3 − 12y2 + 9y− 2
y− 2

= 4y2 − 4y + 1.

Clear, we can notice that the right hand side is a perfect square (else, you could use the quadratic
formula) that:

4y2 − 4y + 1 = (2y− 1)2.

Thus, we now know that the roots are 2 and 1/2 (multiplicity 2). Hence, the phase portrait is:

1/2 2←− ←− −→
Semi-Stable Unstable

Correspondingly, we can sketch a few solutions (not necessarily in scale):

t

y

1/2

2

Note that the above Theorem can be generalized into the following manner (in ring theory):
Theorem: Rational Root Theorem. Let R be UFD, and polynomial:

f (x) = anxn + an−1xn−1 + · · ·+ a0 ∈ R[x],

and let r = p/q ∈ K(R) be a root of f with p, q ∈ R and gcd(p, q) = 1, then p|a0 and q|an. ⌟
The proofs of the above Theorems are left as exercises to diligent readers. Moreover, capable readers
should attempt to prove that a polynomial of degree 3 with integer coefficients must have at least one rational
root.
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5.∗ Determine if the following differential equation is exact. If not, find the integrating factor to make
it exact. Then, solve for its general solution:

y′(x) = e2x + y(x)− 1.

Solution:
First, we write the equation in the general form:

dy
dx

+ (1− e2x − y) = 0.

Now, we take the partial derivatives to obtain that:
∂

∂y
[1− e2x − y] = −1,

∂

∂x
[1] = 0.

Notice that the mixed partials are not the same, the equation is not exact .
Here, we choose the integrating factor as:

µ(x) = exp

(∫ x

0

∂
∂y [1− e2s − y]− ∂

∂s [1]

1
ds

)

= exp
(∫ x

0
−ds

)
= exp(−x).

Therefore, our equation becomes:

(e−x)
dy
dx

+ (e−x − ex − ye−x) = 0.

After multiplying the integrating factor, it would be exact. We leave the repetitive check as an exercise to
the readers.
Now, we can integrate to find the solution with a h(y) as function:

φ(x, y) =
∫
(e−x − ex − ye−x)dx = −e−x − ex + ye−x + h(y).

By taking the partial derivative with respect to y, we have:

∂y φ(x, y) = e−x + h′(y),

which leads to the conclusion that h′(y) = 0 so h(y) = C.
Then, we can conclude that the solution is now:

φ(x, y) = −e−x − ex + ye−x + C = 0,

which is equivalently:

y(x) = C̃ex + 1 + e2x .
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6. Solve the following second order differential equations for y = y(x):

y′′ + y′ − 132y = 0.(a)

y′′ − 4y′ = −4y.(b)

y′′ − 2y′ + 3y = 0.(c)

Solution:

(a) We find the characteristic polynomial as r2 + r− 132 = 0, which can be trivially factorized into:

(r− 11)(r + 12) = 0,

so with roots r1 = 11 and r2 = −12, we have the general solution as:

y(x) = C1e11x + C2e−12x .

(b) We turn the equation to the standard form:

y′′ − 4y′ + 4 = 0.

We find the characteristic polynomial as r2 − 4r + 4 = 0, which can be immediately factorized
into:

(r− 2)2 = 0,

so with roots r1 = r2 = 2 (repeated roots), we have the general solution as:

y(x) = C1e2x + C2xe2x .

(c) We find the characteristic polynomial as r2 − 2r + 3 = 0, which the quadratic formula gives:

r =
2±
√

22 − 4× 3
2

= 1± i
√

2

so with roots r1 = 1 + i
√

2 and r2 = 1− i
√

2, we would have the solution:

y(x) = C1e(1+i
√

2)x + C2e(1−i
√

2)x.

To obtain real solution, we apply Euler’s identity:

y1(x) = ex( cos(
√

2x)− i sin(
√

2x)
)

and y2(x) = ex( cos(−
√

2x)− i sin(−
√

2x)
)
.

By the principle of superposition, we can linearly combine the solutions to be different solutions,
so we have:

ỹ1(x) =
1
2
(y1 + y2) = ex cos(

√
2x),

ỹ2(x) =
1
2
(y2 − y1) = ex sin(

√
2x).

One can verify that ỹ1 and ỹ2 are linearly independent by taking Wronskian,i.e.:

W[ỹ1, ỹ2] = det

(
ex cos(

√
2x) ex sin(

√
2x)

ex cos(
√

2x)−
√

2ex sin(
√

2x) ex sin(
√

2x) +
√

2ex cos(
√

2x)

)
=
√

2e2x cos2(
√

2x) +
√

2e2x sin2(
√

2x) =
√

2e2x ̸= 0.

Now, they are linearly independent, so we have the general solution as:

y(x) = C1ex cos(
√

2x) + C2ex sin(
√

2x) .
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7. Given a differential equation for y = y(t) being:

t3y′′ + ty′ − y = 0.

(a) Verify that y1(t) = t is a solution to the differential equation.

(b)∗ Find the full set of solutions using reduction of order.

(c) Show that the set of solutions from part (b) is linearly independent.

Solution:

(a) Proof. We note that the left hand side is:

t3y′′1 + ty′1 − y1 = t3 · 0 + t · 1− t = t− t = 0.

Hence y1(t) = t is a solution to the differential equation.

(b) By reduction of order, we assume that the second solution is y2(t) = tu(t), then we plug y2(t)
into the equation to get:

2t3u′(t) + t4u′′(t) + tu(t) + t2u′(t) = t4u′′(t) + (2t3 + t2)u′(t) = 0.

Here, we let ω(t) = u′(t) to get a first order differential equation:

t2ω′(t) = (−2t− 1)ω(t).

Clearly, this is separable, and we get that:
ω′(t)
ω(t)

= −2t + 1
t2 = −2

t
− 1

t2 ,

which by integration, we have obtained that:

log
(
ω(t)

)
= −2 log t +

1
t
+ C.

By taking exponentials on both sides, we have:

ω(t) = exp
(
−2 log t +

1
t
+ C

)
= C̃e1/t · 1

t2 .

Recall that we want u(t) instead of ω(t), so we have:

u(t) =
∫

ω(t)dt = C̃
∫

e1/t · 1
t2 dt = −C̃e1/t + D.

By multiplying t, we obtain that:
y2 = −C̃te1/t + Dt,

where Dt is repetitive in y1, so we get:

y(t) = C1t + C2te1/t .

(c) Proof. We calculate Wronskian as:

W[t, te1/t] = det

(
t te1/t

1 e1/t − e1/t

t

)
= −e1/t ̸= 0,

hence the set of solutions is linearly independent.
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8.∗∗ Given the following second order initial value problem:

d2y
dx2 + cos(1− x)y = x2 − 2x + 1,

y(1) = 1,

dy
dx

(1) = 0.

Prove that the solution y(x) is symmetric about x = 1, i.e., satisfying that y(x) = y(2− x).
Hint: Consider the interval in which the solution is unique.

Solution:
Note that I deliberately messed up with all the messy functions. Not only haven’t I found a solution
to the system, Wolfram cannot have an elementary solution as well. Hence, we need to think,
alternatively, on some theorems.

Proof. Here, we suppose that y(x) is a solution, and we want to show that y(2− x) is also a solution.
First we note that we can think of taking the derivatives of y(2− x), by the chain rule:

d
dx

[y(2− x)] = −y′(2− x),

d2

dx2 [y(2− x)] = y′′(2− x).

Now, if we plug in y(2− x) into the system of equations, we have:

• First, for the differential equation, we have:

d2

dx2 [y(x− 2)] + cos(1− x)y(x− 2) = y′′(2− x) + cos(x− 1)y(2− x)

= y′′(2− x) + cos
(
1− (2− x)

)
y(2− x)

= y′′(x) + cos(1− x)y(x)

= x2 − 2x + 1 = (x− 1)2 = (1− x)2

=
(
(2− x)− 1

)2
= (2− x)2 − 2(2− x) + 1.

• For the initial conditions, we trivially have that:

y(1) = y(2− 1) and y′(1) = y′(2− 1).

Hence, we have shown that y(2− x) is a solution if y(x) is a solution.
Again, we observe the original initial value problem that:

cos(1− x) and x2 − 2x + 1 are continuous on R.

Therefore, by the existence and uniqueness theorem for second order linear case, there could be only one
solution, which forces that:

y(x) = y(2− x),

so the solution is symmetric about x = 1, as desired.
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9. Solve the general solution for y = y(t) to the following second order non-homogeneous ODEs.

y′′ + 2y′ + y = e−t.(a)

y′′ + y = tan t.(b)

Solution:

(a) First, we look for homogeneous solution, i.e., y′′ + 2y′ + y = 0, whose characteristic equation is:

r2 + 2r + 1 = (r + 1)2 = 0,

with root(s) being −1 with multiplicity of 2, so the general solution to homogeneous case is:

yg(t) = C1e−t + C2te−t.

Notice that the non-homogeneous part is e−t, but we have e−t and te−t as general solutions
already, so we have our guess of particular solution as:

yp(t) = At2e−t.

By taking the derivatives, we have:

y′p(t) = A(2te−t − t2e−t) and y′′p(t) = A(2e−t − 4te−t + t2et).

We simply plug in the particular solution, so we have:

A(2e−t − 4te−t + t2et) + 2A(2te−t − t2e−t) + At2e−t = e−t

2Ae−t = e−t

A =
1
2

.

Hence, our solution to the non-homogeneous case is:

y(t) = C1e−t + C2te−t +
1
2

t2e−t .

(b) Here, we still look for homogeneous solutions, i.e., y′′ + y = 0, whose characteristic equation is:

r2 + 1 = 0,

with roots ±i. Since we are dealing with real valued functions, we have the general solution as:

yg = C1 sin t + C2 cos t.

Note that tan t does not work with undetermined coefficients, we must use the variation of
parameters, the Wronskian of our solution is:

W[sin t, cos t] = det

(
sin t cos t
cos t − sin t

)
= − sin2 t− cos2 t = −1.

Continues on the next page...
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Continued from last page.

Now, we may use the formula, namely getting the particular solution as:

yp = sin t
∫ − cos t · tan t

−1
dt + cos t

∫ sin t · tan t
−1

dt

= sin t
∫

sin tdt− cos t
∫ sin2 t

cos t
dt

= sin t(− cos t + C)− cos t
∫ 1− cos2 t

cos t
dt

= − sin t cos t +���C sin t− cos t
(∫

sec tdt−
∫

cos tdt
)

= − sin t cos t− cos t (log | sec t + tan t| − sin t + C)

= − sin t cos t + sin t cos t−����C cos t− cos t log | sec t + tan t|

= − cos t log | sec t + tan t|.

Hence, our solution to the non-homogeneous case is:

y(t) = C1 sin t + C2 cos t− cos t log | sec t + tan t| .
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10. Solve for the general solution to the following higher order ODE.

4
d4y
dx4 − 24

d3y
dx3 + 45

d2y
dx2 − 29

dy
dx

+ 6y = 0.(a)

d4y
dx4 + y = 0.(b)∗∗

Hint: Consider the 8-th root of unity, i.e., ζ8, and verify which roots satisfies the polynomial.

Solution:

(a) Note that we obtain the characteristic equation as:

4r4 − 24r3 + 45r2 − 29r + 6 = 0.

To obtain our roots, we use the Rational Root Theorem, so if the characteristic equation has
any rational root, it must have been one (or more) of the following:

±1,±2,±3,±1
2

,±3
2

.

From plugging in the values, we notice that 2 and 3 are roots of the characteristic equation, by
division, we have:

4r4 − 24r3 + 45r2 − 29r + 6
(r− 2)(r− 3)

= 4r2 − 4r + 1 = (2r− 1)2.

Now, we know that the roots are 2, 3, and 1/2 with multiplicity 2, thus the solution to the
differential equation is:

y(x) = C1e2x + C2e3x + C3ex/2 + C4xex/2 .

Again, we invite readers to verify the Rational Root Theorem (c.f. Problem 4).

(b) For this general solution, we trivially obtain that the characteristic polynomial is:

r4 + 1 = 0.

Recall that the root of unity address for the case when rn = 1, so we consider the 8th root of
unity, in which (ζ8)

8 = 1. Now, recall Euler’s Identity and deMoivre’s formula, we note that
only the odd powers of the 8th root of unity satisfies that r4 = −1, namely, are:

ζ8 = cos
(π

4

)
+ i sin

(π

4

)
=

√
2

2
+ i

√
2

2
,

ζ3
8 = cos

(
3π

4

)
+ i sin

(
3π

4

)
= −
√

2
2

+ i

√
2

2
,

ζ5
8 = cos

(
5π

4

)
+ i sin

(
5π

4

)
= −
√

2
2
− i

√
2

2
,

ζ7
8 = cos

(
7π

4

)
+ i sin

(
7π

4

)
=

√
2

2
− i

√
2

2
.

Also, we note that ζ8 and ζ7
8 are complex conjugates, whereas ζ3

8 and ζ5
8 are complex conjugates,

so we can linearly combine them to obtain the set of linearly independent solutions, i.e.:

y(x) =

e (
√

2/2)x

[
C1 cos

(√
2

2
x

)
+ C2 sin

(√
2

2
x

)]

+ e−(
√

2/2)x

[
C3 cos

(√
2

2
x

)
+ C4 sin

(√
2

2
x

)] .
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11. Let a third order differential equation be as follows:

ℓ
[
y(t)

]
= y(3)(t) + 3y′′(t) + 3y′(t) + y(t).

Let ℓ
[
y(t)

]
= 0 be trivial initially.

(a) Find the set of all linearly independent solutions.

Then, assume that ℓ
[
y(t)

]
is non-trivial.

(b) Find the particular solution to ℓ
[
y(t)

]
= sin t.

(c) Find the particular solution to ℓ
[
y(t)

]
= e−t.

(d)∗ Suppose that ℓ
[
y1(t)

]
= f (t) and ℓ

[
y2(t)

]
= g(t) where f (t) and g(t) are “good” functions.

Find an expression to y3(t) such that ℓ
[
y3(t)

]
= f (t) + g(t).

Solution:

(a) Note that the characteristic polynomial can be factorized as perfect cubes:

r3 + 3r2 + 3r + 1 = (r + 1)3 = 0,

its roots are r = −1 with multiplicity 3, so the general solution is:

y(t) = C1e−t + C2te−t + C3t2e−t .

Here, the readers are invited to check, by Wronskian, that set of solutions are linearly independent.

(b) First, we want to make our guess of particular solution as:

yp(t) = A sin t + B cos t,

and by taking the derivatives, we have:

y′p(t) = A cos t− B sin t, y′′p(t) = −A sin t− B cos t, and y′′′p (t) = −A cos t + B sin t.

Then, we want to plug in the results into the equation, so:

ℓ
[
yp(t)

]
= (−A cos t + B sin t) + 3(−A sin t− B cos t) + 3(A cos t− B sin t) + A sin t + B cos t

= (B− 3A− 3B + A) sin t + (−A− 3B + 3A + B) cos t

= (−2A− 2B) sin t + (2A− 2B) cos t.

Therefore, we can obtain the system that:−2A− 2B = 1,

2A− 2B = 0,

which reduces to A = −1/4 and B = −1/4, so the solution is:

y(t) = C1e−t + C2te−t + C3t2e−t − 1
4

sin t− 1
4

cos t .

(c) Here, note that e−t, te−t, and t2e−t are the solutions to homogeneous case, our guess, then, is:

yp(t) = At3e−t,

and by taking the derivatives, we have:

y′p(t) = 3At2e−t − At3e−t, y′′p(t) = 6Ate−t − 6At2e−t + At3e−t, and

y′′′p (t) = 6Ae−t − 18Ate−t + 9At2e−t − At3e−t.

Continues on the next page...
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When we plug the derivatives back to the solutions, we note that:

ℓ
[
yp(t)

]
= (6Ae−t − 18Ate−t + 9At2e−t − At3e−t)

+ 3(6Ate−t − 6At2e−t + At3e−t) + 3(3At2e−t − At3e−t) + (At3e−t)

= 6Ae−t,

which reduces to A = 1/6, so the solution is:

y(t) = C1e−t + C2te−t + C3t2e−t +
1
6

t3e−t .

(d) Proof. Here, one should note that the derivative operator is linear, so we have that:

ℓ
[
y1(t) + y2(t)

]
=

d3

dt3

[
y1(t) + y2(t)

]
+ 3

d2

dt2

[
y1(t) + y2(t)

]
+ 3

d
dt
[
y1(t) + y2(t)

]
+
[
y1(t) + y2(t)

]
= y′′′1 (t) + 3y′′1 (t) + 3y′1(t) + y1(t) + y′′′2 (t) + 3y′′2 (t) + 3y′2(t) + y2(t)

= f (t) + g(t),

as desired.
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12. Let a system of differential equations be defined as follows, find the general solutions to the equation:

x′ =

(
3 0
0 2

)
x, x ∈ R2,(a)

x′ =

1 0 4
1 1 3
0 4 1

 x, x ∈ R3.(b)∗

Solution:

(a) The question should be trivial, we first find the eigenvalues for the equation, i.e.:

det

(
3− λ 0

0 2− λ

)
= 0,

which is (3− λ)(2− λ) = 0, that is λ1 = 3 and λ2 = 2. Then, we look for the eigenvectors.

• For λ1 = 3, we have

(
3− 3 0

0 2− 3

)
ξ1 = 0, which is ξ1 = x1

(
1
0

)
.

• For λ2 = 2, we have

(
3− 2 0

0 2− 2

)
ξ2 = 0, which is ξ2 = x2

(
0
1

)
.

Hence, the solution is:

x = C1e3t

(
1
0

)
+ C2e2t

(
0
1

)
.

(b) Again, we first find the eigenvalues of the equation, i.e.:

det

1− λ 0 4
1 1− λ 3
0 4 1− λ

 = 0,

which is (1− λ)3 + 16− 12(1− λ) = −λ3 + 3λ2 + 9λ + 5 = −(λ + 1)2(λ− 5) = 0.
Hence, the eigenvalues are λ1 = λ2 = −1 and λ3 = 5. Now, we look for eigenvectors.

• For λ1 = −1, we have

2 0 4
1 2 3
0 4 2

 ξ1 = 0, which is x

−4
−1
2

.

• For λ2 = −1, we have

2 0 4
1 2 3
0 4 2

 η =

−4
−1
2

, which is η =

 4x
x + 1
−2x− 1

 =

 0
1
−1

.

• For λ3 = 5, we have

−4 0 4
1 −4 3
0 4 −4

 ξ3 = 0, which is x

1
1
1

.

Hence, the solution is:

x = C1e−t

−4
−1
2

+ C2

te−t

−4
−1
2

+ e−t

 0
1
−1


+ C3e5t

1
1
1

 .
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13. Solve the following initial value problem for the system of equations:

x′ =

(
1 −4
4 −7

)
x, x(0) =

(
3
2

)
.

Solution:
Here, we first find the eigenvalues for the matrix, that is:

det

(
1− λ −4

4 −7− λ

)
= 0.

Therefore, the polynomial is (1− λ)(−7− λ) + 16 = (λ + 3)2 = 0, hence the eigenvalues is λ1 =

λ2 = −3. Then, we look for the eigenvectors.

• For λ1 = −3, we have

(
4 −4
4 −4

)
ξ1 = 0, which is ξ1 = x

(
1
1

)
.

• For λ2 = −3, we have

(
4 −4
4 −4

)
η =

(
1
1

)
, which is η =

(
x

x− 1/4

)
=

(
0
−1/4

)
.

Hence, the general solution is:

x = C1e−3t

(
1
1

)
+ C2

(
te−3t

(
1
1

)
+ e−3t

(
0
−1/4

))
.

By the initial condition, we have x(0) =

(
3
2

)
, so:

x(0) =

(
C1 + 0

C1 − C2/4

)
=

(
3
2

)
.

Therefore, C1 = 3 and C2 = 4, so the particular solution is:

x(t) =

(
3
2

)
e−3t +

(
4
4

)
te−3t .
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14. Let a system of differential equations of xi(t) be as follows:x′1 = 3x1 + 2x2, x1(1) = 0,

x′2 = x1 + 4x2, x2(1) = 2.

(a) Solve for the solution to the initial value problem.

(b) Identify and describe the stability at equilibrium(s).

Solution:

(a) Here, we denote x =
(

x1 x2
)⊺, so our system becomes:

x′ =

(
3 2
1 4

)
x, x(1) =

(
0
2

)
.

Here, the eigenvalues are solutions to:

det

(
3− λ 2

1 4− λ

)
= 0,

which simplifies to λ2 − 7λ + 10 = 0, and further gives λ1 = 2, λ2 = 5. Then, we look for
eigenvectors of the matrix:

• For λ1 = 2, we have

(
1 2
1 2

)
ξ1 = 0, which gives that ξ1 = x2

(
−2
1

)
.

• For λ2 = 5, we have

(
−2 2
1 −1

)
ξ2 = 0, which gives that ξ2 = x1

(
1
1

)
.

Now, the general solution must be:

x = C1

(
−2
1

)
e2t + C2

(
1
1

)
e5t,

and by plugging in the initial condition, we have:−2C1e2 + C2e5 = 0,

C1e2 + C2e5 = 2.

In which the solution is C1 = 2
3e2 and C2 = 4

3e5 , so the solution is:x1 = − 4
3 e2t−2 + 4

3 e5t−5,

x2 = 2
3 e2t−2 + 4

3 e5t−5.

(b) Now, we consider the equilibrium at x =
(
0 0
)⊺, in which we note that both eigenvalues are

positive, meaning that this is an unstable node .
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15. Suppose a matrix M ∈ L(R2) is a rotational matrix by an angle θ (counter-clockwise), then:

M =

(
cos θ − sin θ

sin θ cos θ

)
.

(a)∗ Show that M⊺ = M−1.

(b)∗∗ Let θ = 2π/k be fixed, where k is an integer. Find the least positive integer n such that
Mn = Id2. Here, n is called the order of M.
Hint: Consider the rotational matrix geometrically, rather than arithmetically.

Solution:

(a) Proof. Here, we recall the method of inverting a matrix:

M−1 =
1

det M

(
cos θ −

(
− sin θ

)
− sin θ cos θ

)
=

1
cos2 θ + sin2 θ

(
cos θ sin θ

− sin θ cos θ

)
= M⊺.

(b) Look, we want to analyze this geometrically, if θ = 2π/k, then that implies that M is a counter-
clockwise rotation of 2π/k, and since a full revolution is 2π, this implies a rotation of k times
will make restore to the original vector, i.e., Mk = Id2. Moreover, for any positive integer less
than k, we cannot rotate back to 2π, which implies that the order of M is k .



PILOT Final Review Set: Solutions Differential Equations

16. Let a non-linear system be:
dx
dt

= x− y2 and
dy
dt

= x + x2 − 2y.

Verify that (0, 0) is a critical point and classify its type and stability.

Solution:

proof that (0, 0) is critical point. The verification of (0, 0) being a critical point is trivial. We check that
dx/dt and dy/dt evaluated at (0, 0) are:

dx
dt

∣∣∣∣
(0,0)

= 0 and
dy
dt

∣∣∣∣
(0,0)

= 0,

and hence (0, 0) is a critical point.

In particular, denoting x = (x, y), we verify the linear approximation as:

x′ =

(
1 0
1 −2

)
x,

and we note that the eigenvalues are λ1 = 1 and λ2 = −2, and by:

λ2 < 0 < λ1,

we know that we have a unstable saddle point at (0, 0).
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17. Let a system of non-linear differential equations be defined as follows:x′ = 2x + 3y2,

y′ = x + 4y2.

Find all equilibrium(s) and classify their stability locally.

Solution:
Here, we note that the equilibrium(s) is achieved if and only if x′ = y′ = 0, that is:2x + 3y2 = 0,

x + 4y2 = 0.

In particular, we consider z = y2, so we have a system of linear equations, that is:2x + 3z = 0,

x + 4z = 0.

Meanwhile, the above system simplifies to x = y = 0, hence the only equilibrium is at (x, y) = (0, 0).
Then, we consider the system locally, denoting x = (x, y), that is:

x′ =

(
2 0
1 0

)
x,

where the eigenvalues are λ1 = 2 and λ2 = 0. Note that one eigenvalue is zero and the other is
positive, then the critical point is unstable .
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18. Let a system of equations for x = (x1, x2) ∈ R2 be:

x′ =

(
F(x)
F(x)

)
Suppose that F(x1, x2) = sin x1 + csc(3x2).

(a) Find the set of all equilibrium(s) for x.

(b) Find the set in which the equilibrium(s) is locally linear.

Now, F : R2 → R is not necessarily well-behaved.

(c)∗∗ Construct a function F such that x has a equilibrium that is not locally linear.
Hint: Consider the condition in which a non-linear system is locally linear.

Solution:

(a) Here, we note that the equilibrium is when F(x) = 0, i.e., sin x1 + csc(3x2) = 0. Here, we note
that the image of sin x1 is [−1, 1] and the image of sec(3x2) is (−∞,−1] ⊔ [1, ∞), this implies
that sin x1 + sec(3x2) is zero only if sin x1 = ±1 and sec(3x2) = ∓1, correspondingly.
First, we consider the set in which x1 is +1, that is:{

(4k + 1)π
2

: k ∈ Z

}
.

Correspondingly, we consider the set in which x2 is −1, that is:{
(4k + 3)π

6
: k ∈ Z

}
.

Then, we consider the set in which x1 is −1, that is:{
(4k + 3)π

2
: k ∈ Z

}
.

Likewise, we consider the set in which x2 is +1, that is:{
(4k + 1)π

6
: k ∈ Z

}
.

Therefore, set theoretically, we have the set of all equilibriums as:{
(4k + 1)π

2
: k ∈ Z

}
×
{
(4k + 3)π

6
: k ∈ Z

}
∪
{
(4k + 3)π

2
: k ∈ Z

}
×
{
(4k + 1)π

6
: k ∈ Z

}
.

(b) Note that sin x1 is (twice) differentiable over the entire domain R and csc(3x2) is (twice) differ-
entiable on all neighborhoods when csc(3x2) is ∓1, hence the partial derivatives of F(x) with
respect to x1 or x2 are (twice) differentiable on the neighborhood on all equilibriums, hence the
set in which the equilibrium(s) is locally linearly is the same from part (a), namely:{

(4k + 1)π
2

: k ∈ Z

}
×
{
(4k + 3)π

6
: k ∈ Z

}
∪
{
(4k + 3)π

2
: k ∈ Z

}
×
{
(4k + 1)π

6
: k ∈ Z

}
.

(c) Clearly, we must enforce that F(x) is not twice differentiable with some partial derivatives
near the equilibrium point(s). One trivial example could be using the absolute value, such as
F(x) = |x1|+ |x2|, where (0, 0) is a equilibrium but it is not differentiable.
For capable readers, we invite them to look for more functions, such as the Weierstrass Function,
a continuous function that is nowhere differentiable:

f (x) =
∞

∑
k=0

1
2k cos(3kx).
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19. Let a system of (x, y) be functions of variable t, and they have the following relationship:

x′ = (1 + x) sin y and y′ = 1− x− cos y.

(a) Identify the corresponding linear system.

(b) Evaluate the stability for the equilibrium at (0, 0) by showing it is locally linear.

Solution:

(a) Here, since we can write: (
x
y

)′
=

(
0 0
−1 0

)(
x
y

)
+

(
(1 + x) sin y

1− cos y

)
,

this implies that the linear system is:(
x
y

)′
=

(
0 0
−1 0

)(
x
y

)
.

(b) (0, 0) is locally linear. We find the Jacobian Matrix, that is:

J =

(
sin y (1 + x) cos y
−1 sin y

)
.

As we evaluate J at (0, 0) and take its determinant, we have:

det
(
J
∣∣
(0,0)

)
= det

(
0 1
−1 0

)
= 1 ̸= 0.

Hence, the (0, 0) is locally linear.

Note that we have found the linear system in part (a), whose eigenvalues are λ1 = λ2 = 0.
Since x′ = 0, it indicates that x is a constant, whereas for y′ = −x indicates that it will be a
unstable almost everywhere for all neighborhoods of (0, 0).

In particular, readers could illustrate the “slope field” for the linear system in (a), and they
should notice that except for x = 0 being entirely stable, all other trajectory would shift verti-
cally at a constant rate. However, the line x = 0 will always be insignificant enough (having
Lebesgue measure 0), hence we claim that it is unstable almost everywhere. For interested read-
ers, please explore Lebesgue measure as a way to determine how large a subset is in Euclidean
space.
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20.∗∗ Let a locally linearly system be defined as:

dx
dt

=

(
λ −µ

µ λ

)
x + f(x),

where f : R2 → R2 is a vector-valued function. Find the necessary condition(s) in which the
equilibrium(s) have a stable center in linear system. Then, state the stability and type (if possible).
Hint: Consider the solution for the linear case or matrix exponential.

Solution:
Without loss of generality, we assume that the system of x has equilibrium(s), else the statement is
vacuously true. Now, we start to evaluate the additional conditions with such assumption:

(i) Note that the system needs to be locally linearly, i.e., we must have
f(x) being twice differentiable with respect to partial derivatives .

(ii) Moreover, we need to worry about the linear system to have a stable center, that is:

x′ =

(
λ −µ

µ λ

)
x.

Note that the eigenvalues would be the solutions to (λ− r)2 + µ2 = 0, that is r = λ± iµ, which
is a pair of complex conjugates. Here, in to be stable, we want λ ≤ 0, and for center, this forces
λ = 0 .

Note that even the linear system is a stable center, the stability of the non-linear system is
indeterminate , and the type is center or spiral point .



PILOT Final Review Set: Solutions Differential Equations

21. Given the a system of differential equations as follows:{
x′ = x− y− x(x2 + y2),

y′ = x + y− y(x2 + y2).

Find the limit cycle of the system, classify the critical points, and sketch a phase portrait of the
system.

Solution:
For this problem, we recall the formula converting between polar coordinates and Cartesian coordi-
nates: x = r cos θ, y = r sin θ,

rr′ = xx′ + yy′, r2θ′ = xy′ − yx′.

Now, we are able to convert the system as:

rr′ = x
(

x− y− x(x2 + y2)
)
+ y
(
x + y− y2(x2 + y2)

)
= x2 − xy− x2(x2 + y2) + xy + y2 − y2(x2 + y2)

= x2 + y2 − (x2 + y2)(x2 + y2) = r2 − r4.

r′ = r− r3 = r(1− r2) = r(1 + r)(1− r).

r2θ′ = x
(

x + y− y(x2 + y2)
)
− y
(
x− y− x(x2 + y2)

)
= x2 + xy− xy(x2 + y2)− xy + y2 + xy(x2 + y2)

= x2 + y2 = r2.

θ′ = 1.

Therefore, the system is having limit cycle at r = 0 and r = 1 . Since r′ > 0 for r ∈ (0, 1) and r′ < 0
for r ∈ (1, ∞), thus the limit cycle r = 0 is unstable and the limit cycle r = 1 is stable. The phase
portrait can be illustrated as follows:

x

y

1
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22. Consider the following series. Identify if such series converges. Compute the limit if the series
converges.

∞

∑
k=0

n!
2n .(a)

∞

∑
k=0

x4k+1

(4k + 1)!
.(b)∗

∞

∑
k=0

x4k

(4k)!
−

∞

∑
k=0

x4k+2

(4k + 2)!
.(c)

Solution:

(a) Here, we do the ratio test:

lim
n→∞

(n + 1)!/2n+1

n!/2n = lim
n→∞

n + 1
2

= ∞.

Hence, the series diverges.
As a side note, if you have seen some algorithms in computer science, you might have seen that:

O(2n) ⊂ O(n!).

which is the asymptotic behavior of complexity.

(b) For the question, we expand all the terms of the power series for ex, e−x, sin x, and cos x out
(since they converge absolutely), explicitly as:

ex ∼ +
x0

0!
+

x1

1!
+

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · ·

e−x ∼ +
x0

0!
− x1

1!
+

x2

2!
− x3

3!
+

x4

4!
− x5

5!
+ · · ·

sin x ∼ +
x1

1!
− x3

3!
+

x5

5!
− · · ·

cos x ∼ +
x0

0!
− x2

2!
+

x4

4!
− · · ·

By some arithmetics, one should notice that:
∞

∑
k=0

x4k+1

(4k + 1)!
=

ex − e−x

4
+

sin x
2

.

Hence, the power series converges.

(c) For this sequence, we note that:
∞

∑
k=0

x4k

(4k)!
+

∞

∑
k=0

x4k+2

(4k + 2)!
=

∞

∑
k=0

(−1)kx2k

(2k)!
= cos x .

Thus the power series converges.
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23. Use the series expansions to find the solutions to the following differential equation:

y′′ + 3y′ = 0.

Solution:
Here, we note that we have constant coefficients, so they are automatically analytic. Now, we take
x0 = 0, and assume that our solution is in the form that:

y =
∞

∑
n=0

anxn.

Now, by the assumption that the series converges absolute, we take differentiate the terms twice,
which gives that:

y′ =
∞

∑
n=1

nanxn−1 =
∞

∑
n=0

(n + 1)an+1xn,

and:

y′′ =
∞

∑
n=2

n(n− 1)anxn−2 =
∞

∑
n=0

(n + 2)(n + 1)an+2xn.

With the derivative, we plug it back into the differential equations, that is:
∞

∑
n=0

(n + 2)(n + 1)an+2xn + 3
∞

∑
n=0

(n + 1)an+1xn = 0.

By the term-wise addition, we have:
∞

∑
n=0

[
(n + 2)(n + 1)an+2 + 3(n + 1)an+1

]
xn = 0.

Given that the sequence is equivalently zero, then we have the relation as:

(n + 2)(n + 1)an+2 + 3(n + 1)an+1 = 0,

which is equivalently:

an+2 = − 3(n + 1)an+1

(n + 2)(n + 1)
= −3an+1

n + 2
.

So we can simplify the recurrence relationship as:

an+1 = − 3an

n + 1
for n ≥ 1.

Now, since this differential equation has order 2, we let the first two coefficients fixed, that is a0 and
a1, then we can form the rest of the coefficients as:

a2 = −3a1

2
, a3 = −3a2

3
=

32a1

3!
, a4 = −3a3

4
= −33a1

4!
, · · · .

Thus, the general form is:

an = (−1)n−1 3n−1a1

n!
for n ≥ 1.

Thus, the solution for this problem is:

y(x) = a0 + a1

∞

∑
n=1

(−3)n−1

n!
xn = ã0 + 1 + a1

∞

∑
n=1

(−3)n−1

n!
xn.

Continues on the next page...
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Continued from last page.
Recall that the power series of ex is:

ex ∼
∞

∑
n=0

1
n!

xn.

Thus, we have:

e−3x ∼
∞

∑
n=0

1
n!
(−3x)n =

∞

∑
n=0

(−3)n

n!
xn.

Now, we can also switch to ã1 as a1 = −3ã1, so we have:

y(x) = ã0 + ã1

∞

∑
n=1

(−3)n

n!
xn = ã0 + ã1e−3x .
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24. Use the Euler’s equation to find the solution to the following differential equations:

x2y′′ + 5xy′ + 4y = 0.(a)

5x2y′′ + 3xy′ + 7y = 0.(b)

Solution:

(a) Here, our characteristic equation is:

0 = r(r− 1) + 5r + 4 = r2 + 4r + 4 = (r + 2)2,

whose repeated root is −2, so the solution is:

y(x) = c1|x|−2 + c2 log |x| · |x|−2 .

(b) Here, we can write the equations as:

x2y′′ +
3
5

xy′ +
7
5

y = 0.

Thus, our characteristic equation is:

0 = r(r− 1) +
3
5

r +
7
5
= r2 − 2

5
r +

7
5

.

Now, we have the roots as:

r =
2
5 ±

√
4

25 −
28
5

2
=

1
5
±
√

1
25
− 35

25
=

1
5
± i

1
5

√
34.

Thus, this is a complex root, so the solution is:

y(x) = c1|x|1/5 cos

(√
34
5

log |x|
)
+ c2|x|1/5 sin

(√
34
5

log |x|
)

.
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25. Let a differential equation be defined as:
dy
dt

= t− y and y(0) = 0.

Use Euler’s Method with step size h = 1 to approximate y(5).
Solution:
With y(0) = 0, we have y′(0) = 0− 0 = 0. We do the following steps:

• We approximate y(1) ≈ y(0) + 1 · y′(0) = 0, then we have y′(1) ≈ 1− 0 = 1.

• We approximate y(2) ≈ y(1) + 1 · y′(1) ≈ 1, then we have y′(2) ≈ 2− 1 = 1.

• We approximate y(3) ≈ y(2) + 1 · y′(2) ≈ 2, then we have y′(3) ≈ 3− 2 = 1.

• We approximate y(4) ≈ y(3) + 1 · y′(3) ≈ 3, then we have y′(4) ≈ 4− 3 = 1.

• We approximate y(5) ≈ y(4) + 1 · y′(4) ≈ 4.

Then, we have approximated that:
y(5) ≈ 4 .


