PALOT

Final Review Set: Solutions
Differential Equations

Fall 2024

. Find the general solution for y = y(t):
Y +3y=tt+e ¥,

then, describe the behavior of the solution as t — co.

Solution:
Here, one could note that this differential equation is not separable but in the form of integrating

factor problem, then we find the integrating factor as:

t
u(t) = exp </ 3ds> = exp(3t).
0
By multiplying both sides with exp(3t), we obtain the equation:
o3+ 3y = e 4 e e,
Clearly, we observe that the left hand side is the derivative after product rule for ye* and the right

hand side can be simplified as:
%[ye3t} = te! +ef.

Therefore, we have turned this into an integration problem, so we do the respective integrations,

yedt = /te3tdt+/ eldt

tedt
=— /3 Aldt+¢' +C

giving us that:

3
te?)t e?)t ;
= ? - ? +eée +C.
Eventually, we divide both sides by % to obtain that:
t 1

I L e 3t
y(t)—3 g te + Ce

Here, as t — oo, y(t) diverges to +oco due to the term ¢/3.
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2. Given an initial value problem:
dy 3 _ t
E — Ey = 3¢ + 2e ’
y(0) = yo.

(a) Find the integrating factor y(t).

(b) Solve for the particular solution for the initial value problem.

(c) Discuss the behavior of the solution as t — oo for different cases of yp.

(a)

(b)

(©)

Solution:

As instructed, we look for the integrating factor as:

u(t) = exp (/Ot zds) = |exp (it) .

With the integrating factor, we multiply both sides by j(t) to obtain that:

ye

Clearly, we observe that the left hand side is the derivative after product rule for ye

3
1,—3t/2 _ Eye’?’t/z — 3te3t/2 4 pte3t/2,

—3t/2 and

the right hand side can be simplified as:

d
o [ye—?;t/Z} — 3pe3t/2 4 0pt/2,
Therefore, we have turned this into an integration problem, so we do the respective integrations,

giving us that:
ye 3t/2 = /3t€_3t/2d1’—|—/2€_t/2di’

= —2te /2 4 2/6_3t/2dt — 424 C

= —2te /2 _ %e*&/z — 42 4 C.

Then, we divide both sides by e~3/2 to get the general solution:

4
y(t) = =2t — 3 — 4et + /2.

Given the initial condition, we have that:

y0:0—§—4+c,

which implies C = 16/3 + v, leading to the particular solution that:

y(t) =|—2t — g —4e + <136 +y0> 32|

We observe that:
lim y(t) = lim [—Zt Sy <136 +y0> 63”2} :

f—00 t—o0 3

3t/2

Note that the important terms are ef and €'/, we need to care the critical value —16/3:

e when yp > —16/3,|y(t) — oo when t — co

9

* when yg < —16/3,

y(t) = —oo when t — oo ‘
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3. Suppose f(x) is non-zero, let an initial value problem be:

l-y dy _ f(x)
x dx  1+y’
y(0) = 0.

(a) Show that the differential equation is not linear.
For the next two questions, suppose f(x) = tanx.

(b) State, without justification, the open interval(s) in which f(x) is continuous.

(c)* Show that there exists some J > 0 such that there exists a unique solution y(x) for x € (=46, 9).
Now, suppose that f(x) is some function, not necessarily continuous.

(d)** Suppose that the condition in (c) does not hold, give three examples in which f(x) could be.

Solution:

(a) Proof. We can write the equation as:
Fx,,,:: !/ xf(x) :0’
Y=Y )
xf(x)

Flo(y+1),41)) =y — 150 A1

so the function is non-linear. O

Note that:

(b) Here, we should consider that:

sin x
= t = y
f(x) an x cosx
so the discontinuities are at when cos x = 0, that is:
2k+1
S {(—;)n ke Z} .

Hence, we have the intervals in which f(x) being continuous as:

{<(2k21)n, (2k;1)7r) :keZ} ‘

(c) Proof. Here, we want to write our equation in the standard form and obtain that:

;L . xtanx
A TRV RS
of(t,y)  xtanx-2y

oy (P12

Clear, we note the discontinuities of y at y = £1, and x demonstrated as above, thus we can
form a rectangle Q = (—7t/2,71/2) x (—1,1) in which the initial condition (0,0) € Q and f(¢,v)
with d, f(t,y) are continuous on the interval. By the existence and uniqueness theorem for non-linear

case, we know that there exists some ¢ such that there is a unique solution for —6 < x <46. O

(d) If the condition in (c) does not hold, by contraposition, this implies that continuity must fail,

xf(x) must be discontinuous at x = 0 | Hence, some examples could be:

ie.,

flx) = %, or logx, or cscx, or xyg;(x) etc.
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4. An autonomous differential equation is given as follows:

%:4y3—12y2+9y—2 where t > 0 and y > 0.

Draw a phase portrait and sketch a few solutions with different initial conditions.

Solution:
Recall from Pre-Calculus (or Modern Algebra) the following Rational root test:
Theorem: Rational Root Test. Let the polynomial:

apx" +a, X" =0

have integer coefficients a; € Z and ag, a, # 0, then any rational root r = p/g such that p,q € Z and

gcd(p, q) = 1 satisfies that p|ag and g|ay,. 3
From the theorem, we can note that if the equation has a rational root, it must be one of:
1 1
= 41,42, +-, 4.
’ ’ 274

By plugging in, one should notice that y = 2 is a root (one might also notice 1/2 is a root as well,
but we will get the step slowly), so we can apply the long division (dividing y — 2) to obtain that:
4P — 122+ 9y —2
y—2
Clear, we can notice that the right hand side is a perfect square (else, you could use the quadratic

4y — 4y +1.

formula) that:
42 —dy+1=(2y —1)%

Thus, we now know that the roots are 2 and 1/2 (multiplicity 2). Hence, the phase portrait is:

A2
Semi-Stable  Unstable

Correspondingly, we can sketch a few solutions (not necessarily in scale):

2,_ _______________________________________________________ -
1/2,_ _______________________________________________________ -

Note that the above Theorem can be generalized into the following manner (in ring theory):
Theorem: Rational Root Theorem. Let R be UFD, and polynomial:

f(x) = anx" +a, 13" 1+ +ag € R[x],
and let r = p/gq € K(R) be a root of f with p,q € R and ged(p,q) =1, then p|ag and glay,. 3
The proofs of the above Theorems are left as exercises to diligent readers. Moreover, capable readers
should attempt to prove that a polynomial of degree 3 with integer coefficients must have at least one rational

root.
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5.* Determine if the following differential equation is exact. If not, find the integrating factor to make

it exact. Then, solve for its general solution:

y(x)=e +y(x) -1

Solution:
First, we write the equation in the general form:

d—y—i-(l—ezx—y)zo.

dx
Now, we take the partial derivatives to obtain that:
;y[l —e —y] =1,
0
—[1] = 0.
511 =0

Notice that the mixed partials are not the same, the equation is .
Here, we choose the integrating factor as:

Therefore, our equation becomes:

d
(efx)ﬁ + (e —e*—ye¥)=0.
After multiplying the integrating factor, it would be exact. We leave the repetitive check as an exercise to
the readers.

Now, we can integrate to find the solution with a h(y) as function:

plny) = [(eF = —ye N)dx = —e ¥ — e+ ye 4 h(y).
By taking the partial derivative with respect to y, we have:
dye(x,y) =e " +H(y),
which leads to the conclusion that #'(y) = 0 so h(y) = C.
Then, we can conclude that the solution is now:

px,y)=—e*—e"+ye *+C=0,

y(x) =[Cer + 14 ]

which is equivalently:
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6. Solve the following second order differential equations for y = y(x):

(a) yv'+y —132y =0.
(b) y' -4y = —4y.
(c) y' =2y +3y=0.
Solution:

(a) We find the characteristic polynomial as % + r — 132 = 0, which can be trivially factorized into:
(r—=11)(r+12) =0,

so with roots r; = 11 and r, = —12, we have the general solution as:

y(x) = | Crett™ + Cre 12|,

(b) We turn the equation to the standard form:
v —4y +4=0.
We find the characteristic polynomial as > — 4r 4+ 4 = 0, which can be immediately factorized
into:
(r—2)2=0,

so with roots r; = rp = 2 (repeated roots), we have the general solution as:

1) =[P+ e

(c) We find the characteristic polynomial as r> — 2r + 3 = 0, which the quadratic formula gives:

2 _
rZZ:i:\/Zz 4X3:1:i:i\@

so with roots r; = 1+1v/2 and r, = 1 — iv/2, we would have the solution:
y(x) = Cle(1+iﬁ)x + Cze(l—i\/i)x'

To obtain real solution, we apply Euler’s identity:
y1(x) = e*(cos(V2x) — isin(v2x)) and y»(x) = e*(cos(—v2x) —isin(—Vv2x)).

By the principle of superposition, we can linearly combine the solutions to be different solutions,
so we have:

() = 5 (31 +2) = e cos(v2x),

_ 1 .
y2(x) = E(yz —1) =¢€" sm(\[zx).
One can verify that 177 and i, are linearly independent by taking Wronskian,i.e.:

o e* cos(v/2x) e* sin(v/2x)
Wiy, y2) = det | . ‘o N
e* cos(v/2x) — v/2e¥ sin(v/2x) e sin(v/2x) + v/2e* cos(v/2x)
= V/2¢%* cos?(V2x) + V2e* sin®(V2x) = V/2e** # 0.
Now, they are linearly independent, so we have the general solution as:

y(x) = | Cre* cos(v/2x) + Coe* sin(v/2x) |
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7. Given a differential equation for y = y(t) being:

t3y” + ty/ —y= 0.

(a) Verify that y;(t) = t is a solution to the differential equation.

(b)* Find the full set of solutions using reduction of order.

(c) Show that the set of solutions from part (b) is linearly independent.

(©

Solution:
(a) Proof. We note that the left hand side is:
Pyl +tyy —y1 = 0+t 1—t=t—t=0.
Hence y1(t) = t is a solution to the differential equation. O
(b) By reduction of order, we assume that the second solution is y,(t) = tu(t), then we plug y»(f)

into the equation to get:
2630/ (8) 4+ 40" (8) + tu(t) + 20/ (1) = (1) + 282 + 2)u/ (1) = 0.
Here, we let w(t) = u/(t) to get a first order differential equation:
P’ (1) = (=2t — 1w(t).
Clearly, this is separable, and we get that:
() 2t+1 2 1

wt) 2t 2
which by integration, we have obtained that:

log (w(t)) = —2logt + % +C.
By taking exponentials on both sides, we have:
w(t) = exp <—210gt T % + c> _ G/t tlZ
Recall that we want u(t) instead of w(t), so we have:
u(t) = [w(tyt=C [ Lar = ~CoV* 4 D.

By multiplying ¢, we obtain that:
vy = —Cte!/t + Dt,

where Dt is repetitive in y1, so we get:

y(t) = | Cit + Cote!/t |,

Proof. We calculate Wronskian as:

1/t t tel/! 1/t
Wt te' '] = det VY =—e/" £0,

;
hence the set of solutions is linearly independent. O
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8.** Given the following second order initial value problem:
2
% +cos(1—x)y = x> —2x +1,

y(1) =1,

dy .\
(=0

Prove that the solution y(x) is symmetric about x = 1, i.e., satisfying that y(x) = y(2 — x).
Hint: Consider the interval in which the solution is unique.

Solution:
Note that I deliberately messed up with all the messy functions. Not only haven’t I found a solution
to the system, Wolfram cannot have an elementary solution as well. Hence, we need to think,

alternatively, on some theorems.

Proof. Here, we suppose that y(x) is a solution, and we want to show that (2 — x) is also a solution.

First we note that we can think of taking the derivatives of y(2 — x), by the chain rule:

I ye-v =y,

2
A e—x] =y

Now, if we plug in y(2 — x) into the system of equations, we have:

e First, for the differential equation, we have:
dd—;[y(x —2)] +cos(1 —x)y(x —2) =" (2 — x) + cos(x — 1)y(2 — x)
=y'(2—x)+cos(1—(2—x))y(2—x)
=y"(x) 4 cos(1 — x)y(x)
=x®-2x+1=(x—1)2=(1-x)?
— (-0 -11=2-x*-22-x) +1.
e For the initial conditions, we trivially have that:
y(1) =y(2 -1 and y'(1) = y'(2-1).
Hence, we have shown that (2 — x) is a solution if y(x) is a solution.
Again, we observe the original initial value problem that:

cos(1 — x) and x2 — 2x + 1 are continuous on R.

Therefore, by the existence and uniqueness theorem for second order linear case, there could be only one

solution, which forces that:
y(x) =y(2—x),

so the solution is symmetric about x = 1, as desired. O
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9. Solve the general solution for y = y(t) to the following second order non-homogeneous ODEs.

(a) V' +2) +y=el.
(b) v’ +y=tant.
Solution:

(b)

(a) First, we look for homogeneous solution, i.e., " + 2y’ + y = 0, whose characteristic equation is:

P42r+1=(r+1)2=0,
with root(s) being —1 with multiplicity of 2, so the general solution to homogeneous case is:

yo(t) = Cre ' + Cote ™.

t t

Notice that the non-homogeneous part is e !, but we have ¢! and te™! as general solutions

already, so we have our guess of particular solution as:
yp(t) = At
By taking the derivatives, we have:
yy(t) = AQ2te™ — t2e7) and yy(t) = AQ2e™" —dte™" + 12¢").
We simply plug in the particular solution, so we have:

A2e™! —dte™ +1%") +2A(2te Tt — 2 h) + Attt =0

Hence, our solution to the non-homogeneous case is:

1
y(t) =|Cre ' + Cate ™t + Etze_t .

Here, we still look for homogeneous solutions, i.e., y” + y = 0, whose characteristic equation is:
?+1=0,
with roots +i. Since we are dealing with real valued functions, we have the general solution as:
yg = Cysint + Cy cost.
Note that tant does not work with undetermined coefficients, we must use the variation of
parameters, the Wronskian of our solution is:

sint  cost
W(sint, cost] = det ( ) = —sin®t —cos®t = —1.

cost —sint

Continues on the next page...
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Continued from last page.

Now, we may use the formula, namely getting the particular solution as:

—cost-tant sint - tant
yp:sint/idt—i-cost/ildt

1
)
t
:sint/sintdt—cost/ s dt
cost
) 1 —cos?t
:smt(—cost—kC)—cost/idt
cost

= —sintcost + Csinf — cost (/sectdt—/costdt)

= —sintcost — cost (log|sect + tant| — sint + C)
= —sintcost+sintcost — CeosT — costlog |sect + tan |
= —costlog|sect + tant|.

Hence, our solution to the non-homogeneous case is:

y(t) :‘Cl sint + Cp cost — costlog|sect + tan t| ‘
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10. Solve for the general solution to the following higher order ODE.

dty Py | dy dy
d4
(b)™* ity=o.

Hint: Consider the 8-th root of unity, i.e., (g, and verify which roots satisfies the polynomial.

Solution:
(a) Note that we obtain the characteristic equation as:
4t — 247% + 4512 — 297 4+ 6 = 0.

To obtain our roots, we use the Rational Root Theorem, so if the characteristic equation has

any rational root, it must have been one (or more) of the following:

1 3
+1,£2,43, £, £~
272

From plugging in the values, we notice that 2 and 3 are roots of the characteristic equation, by
division, we have:
4rt — 2473 4 4512 — 291 + 6 ) )
r—2)(r—3) rodrl= (-

Now, we know that the roots are 2, 3, and 1/2 with multiplicity 2, thus the solution to the

differential equation is:

y(x) =|Cre®* + Cre* + Cse*/? + Cyxe/? |

Again, we invite readers to verify the Rational Root Theorem (c.f. Problem 4).
(b) For this general solution, we trivially obtain that the characteristic polynomial is:
*4+1=0.
Recall that the root of unity address for the case when r* = 1, so we consider the 8th root of

unity, in which (g)® = 1. Now, recall Euler’s Identity and deMoivre’s formula, we note that
only the odd powers of the 8th root of unity satisfies that #* = —1, namely, are:

(g = cos (g) +1isin (%) = ? —l—i?,

2
Cg = COos (347I> +isin <3:) = ——\f +i—\2f,
5 57 V2
5 .. —
(g = cos <4 > +isin <4 ) >
77 77 V2 V2
7 . . _ s
{g = cos (4 ) +isin (4 ) - i

Also, we note that (g and } are complex conjugates, whereas 3 and 3 are complex conjugates,
so we can linearly combine them to obtain the set of linearly independent solutions, i.e.:

e (V2/2)x lCl cos (?x) + Cysin <\fx>]
1 e (V2/2 ng cos <\fx> + Cysin (?x)]

y(x) =
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11. Let a third order differential equation be as follows:
£ly(6)] = O (6) + 39" () + 3 (6) + (1),
Let £[y(t)] = 0 be trivial initially.
(a) Find the set of all linearly independent solutions.
Then, assume that ¢[y(t)] is non-trivial.
(b) Find the particular solution to £[y(t)] = sint.
(c) Find the particular solution to £[y(t)] =e".

(d)* Suppose that £[y;(t)] = f(t) and £[y»(t)] = g(t) where f(t) and g(t) are “good” functions.
Find an expression to y3(t) such that £[y3(t)] = f(t) + g(t).

Solution:
(a) Note that the characteristic polynomial can be factorized as perfect cubes:
P43t +3r+1=(r+1)°%=0,

its roots are r = —1 with multiplicity 3, so the general solution is:

y(t) = ‘ Cleit + Czteit + C3t2€7t ‘

Here, the readers are invited to check, by Wronskian, that set of solutions are linearly independent.

(b) First, we want to make our guess of particular solution as:
yp(t) = Asint + Bcost,
and by taking the derivatives, we have:
yy(t) = Acost — Bsint,  y,(t) = —Asint — Bcost, and yy (t) = —Acost + Bsint.
Then, we want to plug in the results into the equation, so:
Clyy(t)] = (—Acost+ Bsint) +3(—Asint — Bcost) +3(Acost — Bsint) + Asint + Bcost
=(B—3A—-3B+ A)sint+ (—A —3B+3A+ B)cost
= (—2A —2B)sint + (2A — 2B) cost.

Therefore, we can obtain the system that:

—2A-2B=1,
2A-2B=0,

which reduces to A = —1/4 and B = —1/4, so the solution is:

1 1
y(t) =| Cre~! + Cote™" 4 Cat?e ! — gsint — cost|

(c) Here, note that e, te™!, and 2t are the solutions to homogeneous case, our guess, then, is:
yp(t) = Atde™t,
and by taking the derivatives, we have:
yp(t) = 3A2%e7t — Adet, y,(t) = 6Ate™ — 6At%e !t + Atde !, and
yy (t) = 6Ae™ —18Ate™" + 9AZ et — Ade™!,

Continues on the next page...
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Continued from last page.
When we plug the derivatives back to the solutions, we note that:
Clyp(t)] = (6Ae™" — 18Ate " +9Ate ™ — APe™")
+3(6Ate™" —6At?e™! + APe!) + 3(3AFe ™! — APe!) + (Afe ™)
=6Ae !,

which reduces to A = 1/6, so the solution is:

1
y(t) =| Cret + Cate ™" 4 Cat?e ! + 8t3e*t .

(d) Proof. Here, one should note that the derivative operator is linear, so we have that:
a3 d? d
(i) +y2(0)] = 25 [y1(5) +y2(0] + 35 [11(8) + ya(O)] + 3 [ya () +y2(D)] + [y1.(5) +y2(1)]
=y (1) +3y1 () + 3y () + ya () + 7' (1) + 35 (1) + 3y (t) +v2(t)
= f() +(t),

as desired. O
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12. Let a system of differential equations be defined as follows, find the general solutions to the equation:

30

(@) x' = X, x € R?,
0 2
1 0 4

(b)* =111 3|x xeR3
0 4 1

Solution:

(a) The question should be trivial, we first find the eigenvalues for the equation, i.e.:

det (3 —A
0

which is (3 —A)(2 —A) =0, thatis A; = 3 and A, = 2. Then, we look for the eigenvectors.

0
2—-A

)-o

1

g =0, which i é =X .

3) 1 1CN 1S Gq 1 (O)
é,( = 0, which is g =X 0

2 2 ’ 2 2 1 .

3—-3 0
e For A1 = 3, we have
0 2 —
-2
e For A, = 2, we have 3 0
0 2 —
Hence, the solution is:
X =

1 0
C1 €3t + C2€2t K
0 1

det

whichis (1-21)34+16—-12(1 - A) =

Hence, the eigenvalues are Ay = Ay =

(b) Again, we first find the eigenvalues of the equation, i.e.:
1-A

0 4

1 1-A 3

0 4 1-A
A3 43A%2 49N +5=—(A+1)%(A—5) =0.
—1 and A3 = 5. Now, we look for eigenvectors.

0,

2 0 4 —4
e For Ay =—1,wehave |1 2 3| ¢&; =0, whichisx | —1
0 4 2 2
2 0 4 —4 4x 0
¢ For Ay = —-1,wehave |1 2 3|ny=|—-1]|,whichisy=| x+1 =11
0 4 2 2 —2x—1 -1
-4 0 4 1
e For Az =5, wehave | 1 —4 3 |3 =0,whichisx |1
0 4 —4 1
Hence, the solution is:
—4 —4 0 1
x=|Cie ' [=1|+C[te | =1| +et| 1 + G |1
2 2 -1 1
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13. Solve the following initial value problem for the system of equations:

, (1 -4 (3
x' = <4 _7) X, x(0) = <2>

Solution:
Here, we first find the eigenvalues for the matrix, that is:

Y L )
4 —7-A

Therefore, the polynomial is (1 — A)(—=7 — A) + 16 = (A + 3)%? = 0, hence the eigenvalues is A; =
Ay = —3. Then, we look for the eigenvectors.

4 —4 1
e For Ay = —3, we have <4 4) ¢1 =0, whichis ¢ = x <1>

4 —4 1
e For A, = —3, we have n= , whichisyg = X = 0 .
4 —4 1 x—1/4 —-1/4

Hence, the general solution is:

ST | (1 -3t 0
x = Cqe <1> +C (te <1> +e (_1/4>> .

By the initial condition, we have x(0) = <2> , 50:

x(0) = Ci1+0 _ 3
N\ -Gra)  \2)°

Therefore, C; = 3 and C; = 4, so the particular solution is:

x(t) = (2) e 3t 4 (j) te 3t |
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14. Let a system of differential equations of x;(t) be as follows:

x] =3x1+2x, x1(1) =0,
xé = x1 +4xy, X2(1) =2.

(a) Solve for the solution to the initial value problem.

(b) Identify and describe the stability at equilibrium(s).

Solution:

(a) Here, we denote x = (x1 xz)T, so our system becomes:

, (3 2 (o
x' = (1 4) X, x(1) = <2>

Here, the eigenvalues are solutions to:

det 3-A 2 =0,
1 4-—A

which simplifies to A2 —7XA+10 = 0, and further gives Ay = 2, A = 5. Then, we look for

eigenvectors of the matrix:

1 2 -2
e For Aq = 2, we have <1 2) ¢1 = 0, which gives that 1 = x2 ( 1 )

-2 2 1
e For A, =5, we have < 1 1) ¢> = 0, which gives that ¢, = x; (1)

Now, the general solution must be:

-2 1
e (D))o
1 1

and by plugging in the initial condition, we have:
—2Cye? + Cre® =0,
C1€2 + C265 =2.

In which the solution is C; = 3% and C, = 34?, so the solution is:

xp = —4eH2 4 455,

Xy = 2622 4 4655,

(b) Now, we consider the equilibrium at x = (0 O)T, in which we note that both eigenvalues are

positive, meaning that this is an | unstable node |.
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15. Suppose a matrix M € £(IR?) is a rotational matrix by an angle 6 (counter-clockwise), then:
M — [ o8 6 —sind ‘
sinf  cos0

(b)** Let 0 = 27 /k be fixed, where k is an integer. Find the least positive integer n such that
M" =1d,. Here, n is called the order of M.
Hint: Consider the rotational matrix geometrically, rather than arithmetically.

(a)* Show that MT = M1

Solution:

(a) Proof. Here, we recall the method of inverting a matrix:

Ml 1 cos —(—sinf)\ 1 cosf sinf _ T
~ detM \ —sing cos 6 © c0s204sin?0 \ —sinf cosf) O

(b) Look, we want to analyze this geometrically, if 6 = 27/k, then that implies that M is a counter-

clockwise rotation of 27t/k, and since a full revolution is 27, this implies a rotation of k times
will make restore to the original vector, i.e., M* = Id,. Moreover, for any positive integer less
than k, we cannot rotate back to 27t, which implies that the order of M is .




PALOT Final Review Set: Solutions Differential Equations

16. Let a non-linear system be:
dx _ 2 dy _ 2
G oxY anda—x—i-x 2y.

Verify that (0,0) is a critical point and classify its type and stability.

Solution:

proof that (0,0) is critical point. The verification of (0,0) being a critical point is trivial. We check that
dx/dt and dy/dt evaluated at (0,0) are:

d—x =0and d—y =0,
and hence (0,0) is a critical point. O

In particular, denoting x = (x,y), we verify the linear approximation as:

., (1 0
x = X,
1 -2

and we note that the eigenvalues are Ay =1 and A; = —2, and by:

Ay <0< Ayq,

we know that we have a | unstable saddle point ‘ at (0,0).
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17. Let a system of non-linear differential equations be defined as follows:
{x’ =2x+3y?,
Y = x+ 42
Find all equilibrium(s) and classify their stability locally.

Solution:
Here, we note that the equilibrium(s) is achieved if and only if x’ =y’ = 0, that is:

2x +3y* =0,
{x +4y* =0.
In particular, we consider z = y?, so we have a system of linear equations, that is:
2x+3z2=0,
{x +4z = 0.

Meanwhile, the above system simplifies to x = y = 0, hence the only equilibrium is at (x,y) = (0,0).

Then, we consider the system locally, denoting x = (x,y), that is:

, 2 0
X = X,
10

where the eigenvalues are A; = 2 and Ay = 0. Note that one eigenvalue is zero and the other is

positive, then the critical point is .
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18. Let a system of equations for x = (x1,x;) € R? be:

Suppose that F(x1,xp) = sinx; + csc(3xy).

(a)
(b)

Find the set of all equilibrium(s) for x.

Find the set in which the equilibrium(s) is locally linear.

Now, F : R?> — R is not necessarily well-behaved.

(c)** Construct a function F such that x has a equilibrium that is not locally linear.

Hint: Consider the condition in which a non-linear system is locally linear.

(@)

(b)

(©)

Solution:

Here, we note that the equilibrium is when F(x) = 0, i.e., sinx; + csc(3xz) = 0. Here, we note
that the image of sinxy is [—1,1] and the image of sec(3xy) is (—oo, —1] LI [1,00), this implies
that sin x; + sec(3x;) is zero only if sinx; = +1 and sec(3x;) = F1, correspondingly.
First, we consider the set in which x7 is +1, that is:
(50 )
Correspondingly, we consider the set in which x; is —1, that is:
(4k +3)m
1
Then, we consider the set in which x7 is —1, that is:
(12 )
Likewise, we consider the set in which x5 is +1, that is:

{(4k+1)n:kez}.

:kGZ}.

6
Therefore, set theoretically, we have the set of all equilibriums as:

{(4k+1)n:kez}x{(4k23)n:kez}u{(4k—;3)n:kez}X{(4k:1)n:kez}‘

2

Note that sin x; is (twice) differentiable over the entire domain R and csc(3x,) is (twice) differ-
entiable on all neighborhoods when csc(3x7) is F1, hence the partial derivatives of F(x) with
respect to x1 or x; are (twice) differentiable on the neighborhood on all equilibriums, hence the
set in which the equilibrium(s) is locally linearly is the same from part (a), namely:

e [ e Y [ T B [T

Clearly, we must enforce that F(x) is ‘not twice differentiable‘ with some partial derivatives

near the equilibrium point(s). One trivial example could be using the absolute value, such as

F(x) = |x1] + |x2|, where (0,0) is a equilibrium but it is not differentiable.

For capable readers, we invite them to look for more functions, such as the Weierstrass Function,

a continuous function that is nowhere differentiable:
[ee)

flx)y=% %cos(?)kx).

k=0
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19. Let a system of (x,y) be functions of variable ¢, and they have the following relationship:
x=(1+x)sinyandy’ =1—x — cosy.
(a) Identify the corresponding linear system.

(b) Evaluate the stability for the equilibrium at (0,0) by showing it is locally linear.

Solution:
(a) Here, since we can write:
(x)l _ ( 0 0) <x> n <(1+x) siny> ,
y -1 0/ \y 1—cosy
this implies that the linear system is:
)= (5 ) C)
y -1.0/\y

(b) (0,0) is locally linear. We find the Jacobian Matrix, that is:
- <siny (1+x) cosy)

-1 siny

As we evaluate J at (0,0) and take its determinant, we have:

0 1
dM%N:M<1J:#0

Hence, the (0,0) is locally linear. O

Note that we have found the linear system in part (a), whose eigenvalues are A; = A = 0.

Since x’ = 0, it indicates that x is a constant, whereas for y’ = —x indicates that it will be a

unstable almost everywhere ‘ for all neighborhoods of (0,0).

In particular, readers could illustrate the “slope field” for the linear system in (a), and they
should notice that except for x = 0 being entirely stable, all other trajectory would shift verti-
cally at a constant rate. However, the line x = 0 will always be insignificant enough (having
Lebesgue measure 0), hence we claim that it is unstable almost everywhere. For interested read-
ers, please explore Lebesgue measure as a way to determine how large a subset is in Euclidean
space.
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20.** Let a locally linearly system be defined as:

dx (A —pu
dt_<y /\)x—l—f(x),

where f : R2 — R? is a vector-valued function. Find the necessary condition(s) in which the
equilibrium(s) have a stable center in linear system. Then, state the stability and type (if possible).
Hint: Consider the solution for the linear case or matrix exponential.

Solution:
Without loss of generality, we assume that the system of x has equilibrium(s), else the statement is

vacuously true. Now, we start to evaluate the additional conditions with such assumption:

(i) Note that the system needs to be Ilocally linearly, ie, we must have

‘ f(x) being twice differentiable with respect to partial derivatives |

(if) Moreover, we need to worry about the linear system to have a stable center, that is:

A —
x = ") x.
oA
Note that the eigenvalues would be the solutions to (A — r)2 + u? = 0, that is r = A & iy, which
is a pair of complex conjugates. Here, in to be stable, we want A < 0, and for center, this forces

[A=0]

Note that even the linear system is a stable center, the stability of the non-linear system is

, and the type is | center or spiral point |
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21. Given the a system of differential equations as follows:
{x’ =x—y—x(x*+y%),

Y =xty-y(+y).
Find the limit cycle of the system, classify the critical points, and sketch a phase portrait of the
system.

Solution:
For this problem, we recall the formula converting between polar coordinates and Cartesian coordi-
nates:

2

x = rcoso, y = rsind,
rr' =xx"+yy', 10 =xy —yx'.

Now, we are able to convert the system as:

= x(x—y—x(x*+y%) +y(x+y -+ )
=x2—xy— (P + ) +xy+y* — P (F +7)
=+ — (PP ) =12 -

r’:r—r‘o’:r(lf 2)27’(1+ r)(1—r).

rP0 =x(x+y—y(x>+y?)) —y(x—y—x(x* +y?))
= 2%+ xy — xy(x? +y) xy + 7 + xy(* + %)
:x2~|—y2:r2.

0 =1.

Therefore, the system is having limit cycle at|r =0and r = 1| Since ¥’ > 0 for r € (0,1) and v’ <0

forr € (1,00), thus the limit cycle » = 0 is unstable and the limit cycle r = 1 is stable. The phase
portrait can be illustrated as follows:

<

(A

\

\.L/
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22. Consider the following series. Identify if such series converges. Compute the limit if the series

converges.
> n!
(a) o
k=0 21
oo 4k+1
(b)* N
P (4k +1)!
i x4k i 4k+2
(c)
0 (4k)! k:o (4k +2)!
Solution:

(a) Here, we do the ratio test:
1 /on+1

n—00 n!/2n n—00

Hence, the series diverges.

As a side note, if you have seen some algorithms in computer science, you might have seen that:
o0@2") c O(n!).

which is the asymptotic behavior of complexity.

(b) For the question, we expand all the terms of the power series for e*, e™¥, sinx, and cos x out

(since they converge absolutely), explicitly as:

2
X
I TR TR L TR R

. B T G S
T T TR T TR L
x! x> x°
x0 x? x*
cosx ~ +a o7 +E —e
By some arithmetics, one should notice that:
A D N sinx
= (4 +1) 4 2

Hence, the power series converges.

(c) For this sequence, we note that:
00 4k 00 x4k+2 00 (_1)kx2k

g@+,§(4k+2)! =k§0 oo Leos¥)

Thus the power series converges.
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23. Use the series expansions to find the solutions to the following differential equation:

vy +3y =0.

Solution:
Here, we note that we have constant coefficients, so they are automatically analytic. Now, we take
xo = 0, and assume that our solution is in the form that:

(o]
y=)_ ax".
n=0

Now, by the assumption that the series converges absolute, we take differentiate the terms twice,
which gives that:

[ee] [ee]
y' =Y napx™ =Y (n+1)a,qx",
n=1

n=|

o

and:

y' =Y n(n=1)apx" % =Y (n+2)(n + 1)ay2x".
n=2

=
Lre

With the derivative, we plug it back into the differential equations, that is:
i (n+2)(n+1)ayox" +3 i (n+1)a,1x" =0.
By the term-wise additiorrl:z/ve have: "

i [(n+2)(n+1)ap4 +3(n+ 1)a,4q]x" = 0.
Given that the sequence is ne:q(ilivalently zero, then we have the relation as:

(n+2)(n+1)ay2+3(n+1)ay1 =0,

which is equivalently:
3(” + 1)an+1 _ _3an+1

2= T ) (n+1) | n+2

So we can simplify the recurrence relationship as:

_ 3
n+1

Now, since this differential equation has order 2, we let the first two coefficients fixed, that is a9 and

Apy1] = forn > 1.

a1, then we can form the rest of the coefficients as:
3111 3ay o 32{11 3[13 - 33111

2 BT T3 T MT Ty A
Thus, the general form is:

n—1
ap = (_1)71—13117"71 forn > 1.
Thus, the solution for this problem is:
© (_13 n—1 _ ®© (_3 n—1
y(x) = a0+ﬂ1 Z %xn - a0+1+a1 2 %xn.
n=1 : n=1 :

Continues on the next page...
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Continued from last page.
Recall that the power series of e* is:

Thus, we have:

[ —

673x ~ ni‘a . (_3x)n — i <_3!)”xn'

n=0 n

Now, we can also switch to a7 as a1 = —3a7, so we have:

& (=3,
y(x):ao—i—alz(n') X =
n=1 :

d + aje 3|,
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24. Use the Euler’s equation to find the solution to the following differential equations:

(a) x2y" +5xy’ + 4y = 0.
(b) 5x2y" 4 3xy’ +7y = 0.
Solution:

(a) Here, our characteristic equation is:
0=r(r—1)+5r+4=r"+4r+4=(r+2)?

whose repeated root is —2, so the solution is:

y(x) =|e1lx|* + e log x| - [x] 2]

(b) Here, we can write the equations as:

3 7
2.0 DL
Xyt sy 5y =0

Thus, our characteristic equation is:

3.7 , 2 7
= —1 — —_ = —_ —.
0=r(r )+5r+5 r 5r+5

Now, we have the roots as:

2 4 28
stVs %
2

yr= = — PR —

Thus, this is a complex root, so the solution is:

y(x) = C1|x|1/5cos <\/537410g|x|> +c2|x|1/5 sin <\/537410g|x|> .
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25. Let a differential equation be defined as:

dt

d—y:t—yandy(O)zo.

Use Euler’s Method with step size & = 1 to approximate y(5).

Solution:
With y(0) = 0, we have y'(0

~—

¢ We approximate y
¢ We approximate y(3) ~
¢ We approximate y(4) ~ y(3
e We approximate y(5) ~ y(4) +1-y/(4

Then, we have approximated that:

= 0— 0 = 0. We do the following steps:

~ 1, then we have y'(2) 2 -1 =1.
~ 2, then we have y/(3) 3 -2 = 1.
~ 3, then we have y'(4) ~4 -3 = 1.
~ 4.

y(5) ~[4]




