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PILOT Final Exam Review

L Introductions

LPrepare the Final

As you prepare for Final exam, please consider the following
resources:
m PILOT webpage for ODEs:
https://jhu-ode-pilot.github.io/FA25/
m Find all the review problem sets.

m Please remember all problem sets since the final is
cumulative.

m Consult the archives page for PILOT sets from the
semester.

m Review the homework/quiz sets provided by the instructor.

m Join the PILOT Final Review Session. (You are here.)

Differential Equations P “\ LOT


https://jhu-ode-pilot.github.io/FA25/

Part 1:
Contents Review

We will get through all contents over this semester.

m Feel free to download the slide deck from the webpage
and annotate on it.

m If you have any questions, ask by the end of each chapter.

Preliminaries
First Order ODEs
Second Order ODEs

Higher Order ODEs



System of First Order Linear ODEs

B Non-linear Systems

Laplace Transformation

B Series Solutions to Second-Order Linear Equations

El Numerical Methods



Preliminaries

m Classifications of Differential Equations
= ODEs vs PDEs

® Modeling Using ODEs
= Half Life Problem
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L Preliminaries

L Classifications of Differential Equations

When having various differential equations, we can classify
them by their properties.

ODEs vs PDEs

Ordinary Differential Equations (ODEs) involves ordinary derivatives ( %),
while Partial Differential Equations (PDEs) involves partial derivatives (%).

This course focuses on ODEs, and it can also be classified in
various different ways:

m Single equation involves one unknown and one equation, while
system of equations involves multiple unknowns and multiple
equations.

m The order of the differential equation is the order of the highest
derivatives term.

m Linear differential equations has only linear dependent on the
function, while non-linear differential equations has non-linear
dependent on the function.

Differential Equations P “\ LOT
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Preliminaries

L Modeling Using ODEs

ODEs can be used for modeling. During modeling, it often
follows the following steps:

Construction of the Models,

Analysis of the Models,

Comparison of the Models with Reality.

An example of modeling is the half-life problem.

Half Life Problem

The physics model for half life indicates the relationship between half life
(7) of a substance of amount N(¢) with initial amount Nj at a time ¢ is:

N(t) = Ny (;)

where the rate of decay (A) and half life (7) are related by:
T X A =log?2.

Differential Equations



First Order ODEs

m Methods of Solving ODEs
= Separable ODEs
= Integrating Factor
m Existence and Uniqueness Theorems
m Autonomous ODEs
= Rational Root Test
m Logistic Population Growth
= Partial Fractions
m Exactness Problem

= Integrating Factor for Non-Exact Case

m Bifurcation

= Bifurcation Diagram
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L_First Order ODEs

L Methods of Solving ODEs

Here, we will introduce various ways of solving ODEs:
Separable ODEs
dy

For ODEs in form M(t) + N(y) g 0, it can be separated by:

M(t)dt + N(y)dy = 0.

When the ODE is not separable, we may consider using the
integrating factor.

Integrating Factor

For ODEs in form % +a(t)y = b(t), the integrating factor is:
u(t) = exp (/a(t)dt> .

Differential Equations P “\ LOT
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L Existence and Uniqueness Theorems

The existence and uniqueness for Initial Value Problem (IVP)
tells us information on if the we can obtain a unique solution
over some interval:

m For an IVP in simple form:
dy _
y(to) = yo.
If a(t) and b(t) are continuous on an interval («, f) and

to € (w, B). Then, there exists a uniqueness solution y for
(a, B) to the IVP.

Differential Equations P “\ LOT
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ODEs

stence and Uniqueness Theorems

Picard’s Theorem

m For an IVP in general form:
dy
o = fby)
y(to) = Yo.
For ty € I = (a,b), yo € ] = (c,d), if f(t,y) and I (t,y) are

continuous on interval I x J. Then, there exists a unique
solution on a smaller interval I’ X ' C I x ], in which

(to,yo) el x ]/.

Only Contrapositive is Guaranteed to be True

For both theorems, you can conclude that if there does not exist a solution or
the solution is not unique, then the conditions must not be satisfied. You cannot
conclude that if the conditions are not satisfied, then there is no unique solution.

Differential Equations P A LOT
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LFirst Order ODEs

L Autonomous ODEs

Autonomous ODEs are in form of:

d

== fWw).
The stability (stable/semi-stable/unstable) of equilibrium can
be determined by phase lines, i.e., the zeros of the function

f(#).

Rational Root Test

Let the polynomial with integer coefficients be defined as:
anx" +a,_1x" 14 4ay =0,

then any rational root r = p/q such that p,q € Z and ged(p, q) = 1 satisfies
that p|ag and q|ay.

Differential Equations P “\ LOT
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The logistic population growth model with population (y),
growing rate (r), and carrying capacity (k) is given by:

ky()

whose general solution is y(t) = ko) +v0
— Yo 0

Partial Fractions

C
For a fraction in the form , it can be
(x — al)"] (x — gz)”z 500 (x — am)”m

decomposed in terms of:

C C C C C
Lo 1'22 e m ol e
x—ay  (x—aq) (x —ap)n X — am (x — apy )m

Differential Equations P “\ LOT
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LFirst Order ODEs

L Exactness Problem

The condition for a function in form M(x,y) + N(x,y) Z—Z =0

to be exact is:
N _ oM

ox oy’
For solving Exact ODEs, either finding [ M(x,y)dx + h(y) or
J N(x,y)dy + h(x) and taking partials again to fit gives the
solution ¥ (x,y) = C.

Integrating Factor for Non-Exact Case

u(t) =exp (/ Myg Nxdx) or u(t) =exp (/ Wdy) .

Differential Equations P “\ LOT
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L Bifurcation

When a differential equation contains some unknown, fixed
parameter C, its equilibriums would exhibit different behavior,
the bifurcation value is the critical value such that the
equilibriums have different stability.

Bifurcation Diagram

A bifurcation diagram is the vertical concatenation of phase portraits (C-y
plot), in which the equilibriums will be marked for respective values of C.

Differential Equations P ALUT



Second Order ODEs

m Linear Homogeneous Cases
= Complex Characteristic Roots
= Repeated Characteristic Roots
m Linear Independence
= Definition of Linearly Independence
= Superposition Principle
m Reduction of Order
= Product Rule and Chain Rule
m Non-homogeneous Cases
= Variation of Parameters

= Undetermined Coefficients
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LSeconcl Order ODEs

L Linear Homogeneous Cases

Consider the linear homogeneous ODE:

y'+py' +aqy=0.
Its characteristic equation is 7> + pr + g = 0, with real, distinct
solutions r1 and r;, the general solution is:

y(t) = cre! + cpe™.
Complex Characteristic Roots

If the solutions are complex, by Euler’s Formula (e” = cost +isint), it can
be written as 1 = A +ip and r; = A — i, then the solution is:

y(t) = c1e™ cos(Bt) + coeM sin(Bt).

Repeated Characteristic Roots
If the solutions are repeated, the solution is:

y(t) = cre’t + cpte™.
Differential Equations P “\LOT
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LSeconcl Order ODEs

L Linear Independence

To form a fundamental set of solutions, the solutions need to
be linearly independent, in which the Wronskian (W) must be
non-zero, meaning that:

Win =t ().

Definition of Linearly Independence

By definition, a set of polynomials {fi, fa,- - -, fu,- - - } is linearly
independent when for Ay, Ay, - -+, Ay, - - - € F (typically C):

/\1f1+)\2f2+"'+)\nfn+"':0 = M =A== A;=---=0.

Superposition Principle

If y1 (t) and y,(t) are solutions to I[y] = 0, then the solution c1y1 (t) + coy2(t)
are also solutions for all constants ¢, ¢y € R.

Differential Equations P “\ LOT
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LSecond Order ODEs

L Reduction of Order

For non-linear second order homogeneous ODEs, when one
solution y1(t) is given, the other solution is in form:

ya(t) = u(t) - y1(t).
Product Rule and Chain Rule
= Product Rule: %[f(x) )] = Z—f(x)g(x) + f(x)%’(x).

X

m Chain Rule: %[f(g(x))] af (g( x)) - dx(x)

Procedure of Reduction of Order

As long as 1 (#) is a solution, you will be able to reduce the differential
equation with respect to y; into a differential equation involving only u" (t)
and #’(t) terms to solve for w(t) = u'(t).

Differential Equations P A LOT
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LSecond Order ODEs

L Non-homogeneous Cases

Let the differential equation be:

Ay"(8) + By'(t) + Cy(t) = g(t),
where g(t) is a smooth function. Let y1 () and y»(t) be the two
homogeneous solutions, then the non-homogeneous cases can
be solved by the following approaches:

Variation of Parameters

The particular solution of the differential equation can be written as the
integrals of respective parts.

P UL G FACE G

Differential Equations P “\ LOT
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LSeconcl Order ODEs

L Non-homogeneous Cases

Another approach is less calculation intensive, but requires the
function g(t) to be constrained in certain forms.

Undetermined Coefficients

A guess of particular solution will be made based on the terms appearing in
the non-homogeneous part, or g(¢). Some brief strategies are:

Non-homogeneous Comp. in g(t) Guess
Polynomials: Z?:o a;tt Z?:o Citt

Trig.: sin(at) and cos(at) | C;sin(ax) + Cp cos(ax)
Exp.: et Ce"

Note that the guess are additive and multiplicative. Moreover,
if the non-homogeneous part already appears in the
homogeneous solutions, an extra t needs to be multiplied on
the non-homogeneous case.

Differential Equations P “\ LOT



Higher Order ODEs

m Existence and Uniqueness Theorem
m Homogeneous Cases
= Complex Characteristic Roots
= Repeated Characteristic Roots
m Linear Independence
= Definition of Linearly Independence
m Abel’s Formula
m Non-Homogeneous Cases

= Variation of Parameters

= Undetermined Coefficients
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er ODEs

nce and Uniqueness Theorem

For higher order IVP in form:

Y+ Pua(yUD 4+ P + Po(by = 8(8),
y(to) = yo, ¥'(to) =y1, -,y (t) = yu-1.

If Py(t), Pi(t), -+, P,—1(t), and g(t) are continuous on an

interval I containing to. Then there exists a unique solution for

y(t) on L.

Only Contrapositive is Guaranteed to be True

Again, for this theorem, you can conclude that if there does not exist a solution
or the solution is not unique, then the conditions must not be satisfied. You cannot
conclude that if the conditions are not satisfied, then there is no unique solution.

Differential Equations P A LOT



L Homogeneous Cases

The higher order homogeneous ODEs are in form:
y™ +a, y"Y 4y +agy = 0.
By computing the characteristic equation
M+ a, 1"+ ayr +ag = 0, with solutions rq, 12, - - -, T,
the general solution is y(t) = c1e"! 4 cpe™ + - - - + ¢pe’t.

Complex Characteristic Roots

If the solutions are complex, by Euler’s Formula (e” = cost +isint), it can
be written as 1 = A +ip and r; = A — i, then the solution is:

y(t) = c1e™ cos(Bt) + coeM sin(Bt) + rest of the solutions.

Repeated Characteristic Roots

If the solutions are repeated with multiplicity m, the solution is:
y(t) = cre™ +cpte™ + - ct™ e’ 4 rest of the solutions.

Differential Equations P “\ LOT
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L Higher Order ODEs

L Linear Independence

To obtain the fundamental set of solutions, the Wronskian (W)
must be non-zero, where Wronskian is:

noowo

LA Y2 T Yn

W[ylryZ/ e /yl’l] - det . . . .
ygn—l) ygn—l) . y](qn—l)

Definition of Linearly Independence

By definition, a set of polynomials {f1, fa,- - -, fu,- - - } is linearly
independent when for Ay, Ay, - -+, Ay, - - - € F (typically C):

/\1f1+)\2f2+"'+)\nfn+"':0 = M =Ar=--=A;=---=0.

Differential Equations P “\ LOT
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LHigher Order ODEs

LAbel's Formula

For higher order ODEs in the form of:

{yw + Paca (DY - Pty + Po(t)y = g(1),
y(to) = yo, y'(to) = y1, -+ ,y" D (ko) = ya-r.
Its Wronskian is:
Wlys, vz, ya] = Cel ~Pra 0,
where C is independent of t but depend on y1,v2,- -, yn.

Differential Equations P “\ LOT
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L Higher Order ODEs

L Non-Homogeneous Cases

Let the differential equation be:

Lly™ ),y V() - y()] = g(t),

where g(t) is a smooth function. Let y1(t), y2(t), - - -, yu(t) be
all homogeneous solutions, then the non-homogeneous cases
can be solved by the following approaches:

Variation of Parameters

The particular solution is:

W,
yp =y (t / LUT-ST /ngt+ -yt / "8 gt,

where W; is defined to be the Wronskian with the i-th column alternated
into (0 --- 0 1)7.

Differential Equations P “\ LOT
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L Higher Order ODEs

L Non-Homogeneous Cases

Undetermined Coefficients

Same as in degree 2, a guess of particular solution will be made based on
the terms appearing in the non-homogeneous part, or g(¢). Some brief
strategies are:

Non-homogeneous Comp. in g(t) Guess
Polynomials: 2‘1'1:0 a;tt 2‘1‘1:0 C;tt

Trig.: sin(at) and cos(at) | C;sin(ax) + Cp cos(ax)
Exp.: et Ce"

Again, the guess are additive and multiplicative. Moreover, if
the non-homogeneous part already appears in the
homogeneous solutions, an extra t needs to be multiplied on
the non-homogeneous case.

Differential Equations P “\ LOT



System of First Order Linear ODEs

m Solving for Eigenvalues and Eigenvectors
m Linear Independence

= Abel’s Formula
m Phase Portraits

= Node Graph
m Repeated Eigenvalues

= Algebraic Multiplicity and Geometric Multiplicity
m Phase Portraits

= Node Graph

= Spiral/Center Graph

= Repeated Eigenvalue Graph



PILOT Final Exam Review
LSystem o

LSolving for Eigenvalues and Eigenvectors

For a given first order linear ODE in form:
x = Ax,
the eigenvalues can be found as the solutions to the
characteristic equation:
det(A —rI) =0,
and the eigenvectors can be then found by solving the linear

system that:
(A—=rl)-¢=0.

Suppose that the eigenvalues are distinct and the eigenvectors
are linearly independent, the solution to the ODE is:

X = Clg(l)eﬁt + ng(Z)erzt bt Cng'f(n)er"t.

Differential Equations P “\ LOT
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m of First Order Linear ODEs

near Independence

Let the solutions form the fundamental matrix ¥ (¢), thus the
Wronskian is:

det (¥(t)).
The system is linearly independent if the Wronskian is

non-zero.

Abel’s Formula
For the linear system in form:
/

X = Ax,

the Wronskian can be found by the trace of A, which is the sum of the
diagonals, that is:

W = Cef trace Adt — Cef(Al/l+A2,2+“'+An,n)dt'

Differential Equations P “\ LOT
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LSystem of First Order Linear ODEs

L Phase Portraits

In particular, we can sketch the linear system of R? in terms of
phase portraits given the eigenvalues and eigenvectors.
m For a node graph, we have it as (directions might vary):

Differential Equations

X1

X1

PALOT
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For repeated eigenvalue r with only one (linearly
independent) eigenvector, if a given a solution is x(!) = &,
the other solution would be:

X(Z) _ @,‘te” + ”ert,
where (A — Ir) - = & and x?) is called the generalized
eigenvector.

Algebraic Multiplicity and Geometric Multiplicity

The algebraic multiplicity refers to the multiplicity of root in the
characteristic polynomial, and the geometric multiplicity refers to the
dimension of the eigenspace associated with the eigenvalue.

m The algebraic multiplicity will be no less than the geometric
multiplicity for each eigenvalue.

m We need the generalized eigenvector when the algebraic multiplicity is
larger than the geometric multiplicity.

Differential Equations P “\ LOT
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LSystem of First Order Linear ODEs

L Phase Portraits

In particular, we can sketch the linear system of R? in terms of
phase portraits given the eigenvalues and eigenvectors.
m For a node graph, we have it as (directions might vary):

Differential Equations

X1

X1

PALOT
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LSystem of First Order Linear ODEs

L Phase Portraits

m For a spiral/center graph, we have it as (directions might
vary):

X1

S

=

N

Differential Equations P “\ LOT
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LSystem of First Order Linear ODEs

L Phase Portraits

m For repeated eigenvalues with less geometric multiplicity,
the solution is (directions might vary):

m If the geometric multiplicity is the same, the graph is
simply a radial shape (directions might vary):

/4
ZIDN

Differential Equations P “\ LOT



Non-linear Systems

m Linear Approximation

= Autonomous Systems
m Stability
m Limit Cycles
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LNon—lin

L Linear Approximation

/ /
For non-linear system (x) - (F(x/]/)> (x) Jif F,G € C?
y Glxy)) \y
and the system is locally linear, the approximation at critical

point (xo, yo) is:
!/ !/
X — X0 X X — Xo
= = X0, . ’
(y—yo> <y> o g0) (y—yo>
where Jacobian is:

_ ( Fx(x0,y0)  Fy(x0,0)
Jnw) = (G o)),

Autonomous Systems

!/

x F (y)) . S

When = , it can be solved implicitly for:
(y> (G(x) SR

dy _ Gx)
dx  F(y)’

Differential Equations P “\ LOT
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For linearized system with eigenvalues 1, 7, the stability can
be concluded as follows:

Eigenvalues Linear System Nonlinear System
Type | Stability Type | Stability
Eigenvalues are A1 and A,
0< A <Ay Node Unstable Node Unstable
M <A <O Node Asymptotically Node Asymptotically
Stable Stable
M <0< Ay Saddle Point Unstable Saddle Point Unstable
AM=A>0 Node Unstable Node or Unstable
Spiral Point
A=A <0 Node Asymptotically Node or Asymptotically
Stable Spiral Points Stable
Eigenvalues are Ay =« +ifand Ay = a — i
x>0 Spiral Point Unstable Spiral Point Unstable
a=0 Center Stable Center or Indeterminate
Spiral Point
a <0 Spiral Point Asymptotically Spiral Point Asymptotically
Stable Stable

Differential Equations

PALOT
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L Non-li

A closed trajectory or periodic solution repeats back to itself

with period T:
x(t+1)\ _ (x(t)
(y(t + T)) N (y(t)) ’
Closed trajectories with either side converging to/diverging
from the solution is a limit cycle.

Conversion to Polar Coordinates

A Cartesian coordinate can be converted by:

x = rcosb,
y =rsin6,
rr' = xx' +yy,

20 = xy/ = }/x/.

Differential Equations P ALUT
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LNon—li

) F(x,y)) ) 1
For a linear system x = with F,G € C:
Y <G(x,y)

A closed trajectory of the system must enclose at least 1
critical point.

If it only encloses 1 critical point, then that critical point
cannot be saddle point.

If there are no critical points, there are no closed
trajectories.

If the unique critical point is saddle, there are no
trajectories.

For a simple connected domain D in the xy-plane with no
holes. If F, + Gy had the same sign throughout D, then
there is no closed trajectories in D.

Differential Equations P “\ LOT
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m Elementary Laplace Transformations

m Step Functions:

m Impulse Functions

m Convolution
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LLaplace Transformation

LProperties of Laplace Transformation

The Laplace Transformation of a function f is defined as:

LU} =F6) = [ ety

Note that Laplace Transformation can be used on
non-continuous functions by utilizing step functions.

Differential Equations P “\ LOT
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Transformation

LProl, erties of Laplace Transformation

Laplace Transformation has the following properties:
Laplace Transformation is a linear operator:
L{f+Agt = L{f} +AL{g}
Laplace Transformation for derivatives:
L{f(t)} = sL{f(t)} — £(0),
L{f"(H)} = s"L{f(t)} —sf(0) — £(0),

LEFO ()} = $"E(s) =" F(0) — - - — fD)(0).
First Shifting Theorem:
L{e f(t)} = F(s —¢).
The Laplace Transformations can be used for solving IVP,

where the inverse helps to find the original function prior to
transformation.

Differential Equations P “\ LOT



PILOT Final Exam Review

LLaplace Transformation

LElementar),' Laplace Transformations

The Laplace Transformations for elementary functions are
given in the following table, note that they can still be
calculated by its definition:

f)y=L7HE@)} | Fs) = L{f(D)}
1
1 g,s >0
e L,s >aq
s—a
n!
t",n € Z~g n+1,s>0
. a
sin(at) 2 5 25> 0
cos(at) 2 25 0
sinh(at) oS> 0
s
cosh(at) szTiaz's >0
s
fet) L)

Differential Equations P “\ LOT
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LLaplace Trans

L Step Functions:

The step functions are defined by:
0, t<cg,

u(t) =u(t—c) = {1 P>e

And the Laplace Transformations of the step function is:
e—CS

L{ue()} =<
The step function forms the Second Shifting Theorem:

L{uc(t)f(t—c)} = e “F(s).

Differential Equations P “\ LOT



L Impulse Functions

The idealized unit impulse function é(t), or Dirac delta
function, satisfies the properties that:
O(f) =0fort#0 and / o(t)dt = 1.

There is no ordinary function satisfying the idealized unit
impulse function, so it is a generalized function.
A unit impulse at an arbitrary point t = ¢y, denoted by
5(t —tg), follows that:

5(t)=0fort#ty  and / 5(t — to)dt = 1.

The Laplace Transformation of the impulse function is:

L{5(t—c)} =e .

Differential Equations P “\ LOT



The convolution of f and g, denoted (f * g), is defined as:

(f=g)(t /ft—r dr—/f (t—T1)dt.

The convolution f * ¢ has many of the properties of ordinary
multiplication:

Commutativity: f x g = g* f;

Distributivity: f (g+h) = fxg+ f*h;

Associativity: (f*g)xh = f*(g=*h);

Zero Property: f x0 = 0 f = 0, where 0 is a function that

maps any input to 0.

The Laplace Transformation of the convolution of f and g is:

L{(f*&) (1)} = E(s)G(s).

Differential Equations P “\ LOT
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LSeries Solutions to Second-Order Linear Equations

L Power Series

A power series is an infinite series in the form:
(o]
Y an(x—c)" =ag+ar(x—c)+a(x—c)?+---,
n=0

where a,, is the coefficient for term #n and c is the center of the
approximation.
A power series )7 a,(x — xq)" converge at a point x if:

N
lim a,(x — xg)" exists for that x.
N—o0 nZO n( 0)

A power series converges pointwise on X if it converges on
every x € X.

Differential Equations P “\ LOT
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LSeries Solutions to Second-Order Linear Equations

L Power Series

A power series converges absolutely at a point x if the power

series:
o0 oo

Y fan(x —x0)"| = Y |an||x — x0|" converges.
n=0 n=0

Note that absolute converges implies convergence, but the
converse is not true.

Differential Equations P “\ LOT



PILOT Final Exam Revie

L Series Second-Order Linear Equations

L Power Series

Here are some properties of series:

(Ratio test). If a,, # 0, and if for a fixed value of x, and:
lim | %t (x — x)" !
n—eo | x,(x — xp)"

then the power series converges absolutely at x if
|x — xo|L < 1 and diverges if |x — xo|L > 1.

An+1

= |x — xo|L,

= |x — xo| lim
n—oo

(Monotonic property). If the power series
Yoo an(x — x0)" converges at x = x1, then it converges
absolutely for |x — xo| < |x1 — xo]|. If it diverges at x = xy,
then it diverges for |x — xo| > |x1 — xo].

(Radius of convergence). Let p > 0 be such that
Y oo an(x — x0)" converges absolutely for |x — xo| < p and
diverges for |x — xo| > p, then p is the radius of convergence
and (xg — p, xo + p) is the interval of convergence.

Differential Equations P “\ LOT
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LSeries Solutions to Second-Order Linear Equations

L Power Series

Also, we note that power series can be added or subtracted
term-wise. They can also be multiplied and divided by having
divisions of terms.

Recall that by Taylor theorem, suppose f € C%, then we can
form the Taylor polynomial as a power series, with coefficient:

f1(x0)

nt
In particular, if f has a Taylor polynomial at xo with a positive
radius of convergence, we say the series is analytic at xo.

ay =

Differential Equations P “\ LOT
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LSeries Solutions to Second-Order Linear Equations

L Ordinary Point

Here, we are thinking of the second order homogeneous
differential equation, namely:

PETL + Q% 1 Ry = 0.

Additionally, we suppose that P, Q, and R are polynomials
and have no factor common factor (x — ¢). Thus, we have
P(xp) # 0 being an ordinary point. When P(xp) =0, itis a
singular point (or pole).

Differential Equations P “\ LOT
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L Series ons to Second-Order Linear Equations

L Ordinary Point

When we generalize, we will have:

2

T p0) Y axy =0,

where p and g are any functions. Similarly, consider xo where
both p and g are analytic, x is ordinary, otherwise, it is
singular. Here, we say p(x) has singularity of a pole at xg of
order n if:

(x — x0)"p(x) is analytic at xo.

Assuming absolute convergence, one can apply the derivative
operator on the sequence, that is:

d [a X )
o ll\lgr;o;an X —Xp) ] = lim [dxn;oan(x_x()) ]

N—oo

=1 _ n—l.
Nﬂ;unn(x X0)

Differential Equations P “\ LOT
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LSeries Solutions to Second-Order Linear Equations

L Ordinary Point

Often, we we apply the derivative operator, we will notice
some recurrence relation, that is the successive coefficients can
be evaluated one by one.

In particular, when we have a power series:

p(x) = i a(x — x0)",

by taking the m-th derivative and evaluating it at 0, we will

have: m
F}f(xo) = mlay.
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LSeries Solutions to Second-Order Linear Equations

L Euler Equations

In the section, we go back to the focus of:

P(x)y" +Q(x)y" + R(x)y =0,
where P, Q, R are polynomials with no common factors.
For the Euler’s equation, we consider the differential equation
in the form:
Xy + axy' + By = 0.
Then, |x|" is a solution to the above differential equation if r is
a solution to r(r — 1) +ar+ g = 0.

Differential Equations P “\ LOT



PILOT Final Exam Review

LSeries Solutions to Second-Order Linear Equations

L Euler Equations

Let r1, 2 be the roots of r(r — 1) + ar + p = 0, then the solution
to the differential equation can be represented by:

m When r, 7, € R and 71 # 1y, then:
y(x) = cr|x[™ + c2fx[™.
m When 1,7 € R and r := r; = rp, then:
y(x) = c1]x[" + c2log |x| - |x]".
® Whenry,mm =A+iy € Cand yu # 0, then:
y(x) = c1]x|" cos (pulog |x|) + c2|x|* sin (i log |x]).
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Now, we want to research on the case when xg is a regular
singular point, that is for equation:

v +p)y +4(x)y =0,

and x( satisfies that:

X is a singular point, and

p(x) has a pole of order 1 and g(x) has a pole of order no

more than 2.

A singular point that is not regular is a irregular singular
point.
Without loss of generality, we may horizontally shift the
equation to obtain that x = 0 is a regular singular point. Then,
we may write:

xp(x) =) pux" and xq(x) =Y gux"
n=0 n=0

on some interval |x| < p within the radius of convergence.
Differential Equations P “\LOT
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Hence, we may multiply x> on both side, giving us that:
2y +x (xp(x)) y' + (x%q(x)) y =0,
~—— ———
p(x) q(x)
in which p and § are analytic at x = 0. Then, we will be able to

Euler Equations to solve for the differential equation with
respect to p and 4.

Differential Equations P “\ LOT
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m Euler’s Method

m Generalization on Euler’s Method
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LNumerical Methods

L Euler’s Method

The numerical approximation focuses on first-order initial
value problem:

By the Existence and Uniqueness Theorem, a unique solution
exists for some rectangular region containing (¢, yo) when f
and % are continuous. With this foundation, we may apply
Euler’s method on such region. (Note that out of the region,
the approximation would not be accurate.)
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LNumerical Methods

L Euler’s Method

Euler’s method recursively applies the following function:
y}’l-i-l = yifl +f(tn/yn)(tn+l - tﬂ)/ n= 0/ 1/2/ Ty
and when the steps are constrained to be a constant /, we have:
yn+1 = yl’l +hf(ti’l/y1’l)/ n= 0/ 1/2/ Tt .
Typically, Euler’s method incurs error, whereas some typical
issues are:

When the step size & is too big, the error is significant.

When the step size h is too small, the cost of calculation is
expensive.

The computation does address the asymptotic behaviors.

When the vector field has steep components, the
approximation differs more.
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LGenerahzatlon on Euler’s Method

Euler’s method can be analyzed by using the Fundamental
Theorem of Calculus, that is:

v = vl + [ Fls.u(5))ds
ryt)+ Y fltyn)(tin = t),

to<ti<ti1<t
in which we may establish the improved Euler’s Method, by:
tu,Yn) + f(tns1, Yn + RS (tn,

yn+1:yn+h<f(nyn) f(ngyn f(nyn))>/

by considering the trapezoid approach for Riemann sum.

Since the f(t,y) depends only on f and not on y, then solving

differential equation reduced from y’ = f(t,y) to integrating

f(t), which makes the improved Euler’s Method into:

Yny1 = Yn + g(f(tn) + f(tn +h))

Differential Equations P “\ LOT




Part 2:
Open Poll

We will work out some sample questions.

m Please let us know if you have questions from the Review
Problem Sets or Weekly Problem Sets.

m Let us know if you want to go through any concepts that
you are not sure with.



Thank you for being with Differential
Equations PILOT this semester.

Good luck on your finals, and best wished for your future
pursuits!

While you prepare for the final:

Collaborate with your friends and classmates to study together!

Get physically and mentally prepared. Get enough sleep and some
food before the exam!

Believe in yourself. You are amazing and you can make it this!
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