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Introductions

Prepare the Final

As you prepare for Final exam, please consider the following
resources:

PILOT webpage for ODEs:
https://jhu-ode-pilot.github.io/FA25/

Find all the review problem sets.
Please remember all problem sets since the final is
cumulative.

Consult the archives page for PILOT sets from the
semester.

Review the homework/quiz sets provided by the instructor.
Join the PILOT Final Review Session. (You are here.)

Differential Equations P LOT

https://jhu-ode-pilot.github.io/FA25/


Part 1:
Contents Review

We will get through all contents over this semester.

Feel free to download the slide deck from the webpage
and annotate on it.
If you have any questions, ask by the end of each chapter.

1 Preliminaries

2 First Order ODEs

3 Second Order ODEs

4 Higher Order ODEs



5 System of First Order Linear ODEs

6 Non-linear Systems

7 Laplace Transformation
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Preliminaries

Classifications of Differential Equations

When having various differential equations, we can classify
them by their properties.

ODEs vs PDEs
Ordinary Differential Equations (ODEs) involves ordinary derivatives ( dy

dt ),

while Partial Differential Equations (PDEs) involves partial derivatives ( ∂y
∂t ).

This course focuses on ODEs, and it can also be classified in
various different ways:

Single equation involves one unknown and one equation, while
system of equations involves multiple unknowns and multiple
equations.

The order of the differential equation is the order of the highest
derivatives term.

Linear differential equations has only linear dependent on the
function, while non-linear differential equations has non-linear
dependent on the function.

Differential Equations P LOT



PILOT Final Exam Review

Preliminaries

Modeling Using ODEs

ODEs can be used for modeling. During modeling, it often
follows the following steps:

1 Construction of the Models,
2 Analysis of the Models,
3 Comparison of the Models with Reality.

An example of modeling is the half-life problem.

Half Life Problem
The physics model for half life indicates the relationship between half life
(τ) of a substance of amount N(t) with initial amount N0 at a time t is:

N(t) = N0

(
1
2

) t
τ

,

where the rate of decay (λ) and half life (τ) are related by:

τ × λ = log 2.

Differential Equations P LOT
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First Order ODEs

Methods of Solving ODEs

Here, we will introduce various ways of solving ODEs:

Separable ODEs

For ODEs in form M(t) + N(y)
dy
dt

= 0, it can be separated by:

M(t)dt + N(y)dy = 0.

When the ODE is not separable, we may consider using the
integrating factor.

Integrating Factor

For ODEs in form
dy
dt

+ a(t)y = b(t), the integrating factor is:

µ(t) = exp
(∫

a(t)dt
)

.

Differential Equations P LOT
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First Order ODEs

Existence and Uniqueness Theorems

The existence and uniqueness for Initial Value Problem (IVP)
tells us information on if the we can obtain a unique solution
over some interval:

For an IVP in simple form:
dy
dt

= a(t)y + b(t),

y(t0) = y0.
If a(t) and b(t) are continuous on an interval (α, β) and
t0 ∈ (α, β). Then, there exists a uniqueness solution y for
(α, β) to the IVP.

Differential Equations P LOT



PILOT Final Exam Review

First Order ODEs

Existence and Uniqueness Theorems

Picard’s Theorem
For an IVP in general form:

dy
dt

= f (t, y),

y(t0) = y0.

For t0 ∈ I = (a, b), y0 ∈ J = (c, d), if f (t, y) and ∂ f
∂y (t, y) are

continuous on interval I × J. Then, there exists a unique
solution on a smaller interval I′ × J′ ⊂ I × J, in which
(t0, y0) ∈ I′ × J′.

Only Contrapositive is Guaranteed to be True

For both theorems, you can conclude that if there does not exist a solution or
the solution is not unique, then the conditions must not be satisfied. You cannot
conclude that if the conditions are not satisfied, then there is no unique solution.

Differential Equations P LOT
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First Order ODEs

Autonomous ODEs

Autonomous ODEs are in form of:
dy
dt

= f (y).

The stability (stable/semi-stable/unstable) of equilibrium can
be determined by phase lines, i.e., the zeros of the function
f (t).

Rational Root Test
Let the polynomial with integer coefficients be defined as:

anxn + an−1xn−1 + · · ·+ a0 = 0,

then any rational root r = p/q such that p, q ∈ Z and gcd(p, q) = 1 satisfies
that p|a0 and q|an.

Differential Equations P LOT
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First Order ODEs

Logistic Population Growth

The logistic population growth model with population (y),
growing rate (r), and carrying capacity (k) is given by:

dy
dt

= r
(

1 − y
k

)
y,

y(0) = y0,

whose general solution is y(t) =
ky0

(k − y0)e−rt + y0
.

Partial Fractions

For a fraction in the form
C

(x − a1)n1 (x − a2)n2 · · · (x − am)nm
, it can be

decomposed in terms of:

C1,1

x − a1
+

C1,2

(x − a1)2 + · · ·+
C1,n1

(x − a1)n1
+ · · ·+ Cm,1

x − am
+ · · ·+ Cm,nm

(x − am)nm
.

Differential Equations P LOT
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First Order ODEs

Exactness Problem

The condition for a function in form M(x, y) + N(x, y)
dy
dx

= 0
to be exact is:

∂N
∂x

=
∂M
∂y

.

For solving Exact ODEs, either finding
∫

M(x, y)dx + h(y) or∫
N(x, y)dy + h(x) and taking partials again to fit gives the

solution Ψ(x, y) = C.

Integrating Factor for Non-Exact Case

µ(t) = exp
(∫ My − Nx

N
dx

)
or µ(t) = exp

(∫ Nx − My

M
dy

)
.

Differential Equations P LOT
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First Order ODEs

Bifurcation

When a differential equation contains some unknown, fixed
parameter C, its equilibriums would exhibit different behavior,
the bifurcation value is the critical value such that the
equilibriums have different stability.

Bifurcation Diagram

A bifurcation diagram is the vertical concatenation of phase portraits (C-y
plot), in which the equilibriums will be marked for respective values of C.

Differential Equations P LOT
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Second Order ODEs

Linear Homogeneous Cases

Consider the linear homogeneous ODE:
y′′ + py′ + qy = 0.

Its characteristic equation is r2 + pr + q = 0, with real, distinct
solutions r1 and r2, the general solution is:

y(t) = c1er1t + c2er2t.

Complex Characteristic Roots

If the solutions are complex, by Euler’s Formula (eit = cos t + i sin t), it can
be written as r1 = λ + iβ and r2 = λ − iβ, then the solution is:

y(t) = c1eλt cos(βt) + c2eλt sin(βt).

Repeated Characteristic Roots

If the solutions are repeated, the solution is:

y(t) = c1ert + c2tert.

Differential Equations P LOT
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Second Order ODEs

Linear Independence

To form a fundamental set of solutions, the solutions need to
be linearly independent, in which the Wronskian (W) must be
non-zero, meaning that:

W[y1, y2] = det
(

y1 y2
y′1 y′2

)
.

Definition of Linearly Independence

By definition, a set of polynomials { f1, f2, · · · , fn, · · · } is linearly
independent when for λ1, λ2, · · · , λn, · · · ∈ F (typically C):

λ1 f1 + λ2 f2 + · · ·+ λn fn + · · · = 0 ⇐⇒ λ1 = λ2 = · · · = λn = · · · = 0.

Superposition Principle

If y1(t) and y2(t) are solutions to l[y] = 0, then the solution c1y1(t) + c2y2(t)
are also solutions for all constants c1, c2 ∈ R.

Differential Equations P LOT
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Second Order ODEs

Reduction of Order

For non-linear second order homogeneous ODEs, when one
solution y1(t) is given, the other solution is in form:

y2(t) = u(t) · y1(t).

Product Rule and Chain Rule

Product Rule:
d

dx
[ f (x) · g(x)] =

d f
dx

(x)g(x) + f (x)
dg
dx

(x).

Chain Rule:
d

dx
[

f
(

g(x)
)]

=
d f
dx

(
g(x)

)
· dg

dx
(x).

Procedure of Reduction of Order
As long as y1(t) is a solution, you will be able to reduce the differential
equation with respect to y2 into a differential equation involving only u′′(t)
and u′(t) terms to solve for ω(t) = u′(t).

Differential Equations P LOT
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Second Order ODEs

Non-homogeneous Cases

Let the differential equation be:
Ay′′(t) + By′(t) + Cy(t) = g(t),

where g(t) is a smooth function. Let y1(t) and y2(t) be the two
homogeneous solutions, then the non-homogeneous cases can
be solved by the following approaches:

Variation of Parameters
The particular solution of the differential equation can be written as the
integrals of respective parts.

yp = y1(t)
∫ −y2(t) · g(t)

W
dt + y2(t)

∫ y1(t) · g(t)
W

dt.

Differential Equations P LOT
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Second Order ODEs

Non-homogeneous Cases

Another approach is less calculation intensive, but requires the
function g(t) to be constrained in certain forms.

Undetermined Coefficients
A guess of particular solution will be made based on the terms appearing in
the non-homogeneous part, or g(t). Some brief strategies are:

Non-homogeneous Comp. in g(t) Guess
Polynomials: ∑d

i=0 aiti ∑d
i=0 Citi

Trig.: sin(at) and cos(at) C1 sin(ax) + C2 cos(ax)
Exp.: eat Ceat

Note that the guess are additive and multiplicative. Moreover,
if the non-homogeneous part already appears in the
homogeneous solutions, an extra t needs to be multiplied on
the non-homogeneous case.

Differential Equations P LOT
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Higher Order ODEs

Existence and Uniqueness Theorem

For higher order IVP in form:{
y(n) + Pn−1(t)y(n−1) + · · ·+ P1(t)y′ + P0(t)y = g(t),
y(t0) = y0, y′(t0) = y1, · · · , y(n−1)(t0) = yn−1.

If P0(t), P1(t), · · · , Pn−1(t), and g(t) are continuous on an
interval I containing t0. Then there exists a unique solution for
y(t) on I.

Only Contrapositive is Guaranteed to be True

Again, for this theorem, you can conclude that if there does not exist a solution
or the solution is not unique, then the conditions must not be satisfied. You cannot
conclude that if the conditions are not satisfied, then there is no unique solution.

Differential Equations P LOT
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Higher Order ODEs

Homogeneous Cases

The higher order homogeneous ODEs are in form:

y(n) + an−1y(n−1) + · · ·+ a1y′ + a0y = 0.
By computing the characteristic equation
rn + an−1rn−1 + · · ·+ a1r + a0 = 0, with solutions r1, r2, · · · , rn,
the general solution is y(t) = c1er1t + c2er2t + · · ·+ cnernt.

Complex Characteristic Roots

If the solutions are complex, by Euler’s Formula (eit = cos t + i sin t), it can
be written as r1 = λ + iβ and r2 = λ − iβ, then the solution is:

y(t) = c1eλt cos(βt) + c2eλt sin(βt) + rest of the solutions.

Repeated Characteristic Roots

If the solutions are repeated with multiplicity m, the solution is:

y(t) = c1ert + c2tert + · · · cmtm−1ert + rest of the solutions.

Differential Equations P LOT
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Higher Order ODEs

Linear Independence

To obtain the fundamental set of solutions, the Wronskian (W)
must be non-zero, where Wronskian is:

W[y1, y2, · · · , yn] = det


y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...
. . .

...
y(n−1)

1 y(n−1)
2 · · · y(n−1)

n

 .

Definition of Linearly Independence

By definition, a set of polynomials { f1, f2, · · · , fn, · · · } is linearly
independent when for λ1, λ2, · · · , λn, · · · ∈ F (typically C):

λ1 f1 + λ2 f2 + · · ·+ λn fn + · · · = 0 ⇐⇒ λ1 = λ2 = · · · = λn = · · · = 0.

Differential Equations P LOT
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Higher Order ODEs

Abel’s Formula

For higher order ODEs in the form of:{
y(n) + Pn−1(t)y(n−1) + · · ·+ P1(t)y′ + P0(t)y = g(t),
y(t0) = y0, y′(t0) = y1, · · · , y(n−1)(t0) = yn−1.

Its Wronskian is:
W[y1, y2, · · · , yn] = Ce

∫
−Pn−1(t)dt,

where C is independent of t but depend on y1, y2, · · · , yn.

Differential Equations P LOT



PILOT Final Exam Review

Higher Order ODEs

Non-Homogeneous Cases

Let the differential equation be:

L[y(n)(t), y(n−1)(t), · · · , y(t)] = g(t),
where g(t) is a smooth function. Let y1(t), y2(t), · · · , yn(t) be
all homogeneous solutions, then the non-homogeneous cases
can be solved by the following approaches:

Variation of Parameters
The particular solution is:

yp = y1(t)
∫ W1g

W
dt + y2(t)

∫ W2g
W

dt + · · ·+ yn(t)
∫ Wng

W
dt,

where Wi is defined to be the Wronskian with the i-th column alternated
into

(
0 · · · 0 1

)⊺.

Differential Equations P LOT
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Higher Order ODEs

Non-Homogeneous Cases

Undetermined Coefficients
Same as in degree 2, a guess of particular solution will be made based on
the terms appearing in the non-homogeneous part, or g(t). Some brief
strategies are:

Non-homogeneous Comp. in g(t) Guess
Polynomials: ∑d

i=0 aiti ∑d
i=0 Citi

Trig.: sin(at) and cos(at) C1 sin(ax) + C2 cos(ax)
Exp.: eat Ceat

Again, the guess are additive and multiplicative. Moreover, if
the non-homogeneous part already appears in the
homogeneous solutions, an extra t needs to be multiplied on
the non-homogeneous case.

Differential Equations P LOT
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System of First Order Linear ODEs

Solving for Eigenvalues and Eigenvectors

For a given first order linear ODE in form:
x′ = Ax,

the eigenvalues can be found as the solutions to the
characteristic equation:

det(A − rI) = 0,
and the eigenvectors can be then found by solving the linear
system that:

(A − rI) · ξ = 0.

Suppose that the eigenvalues are distinct and the eigenvectors
are linearly independent, the solution to the ODE is:

x = c1ξ(1)er1t + c2ξ(2)er2t + · · ·+ cnξ(n)ernt.

Differential Equations P LOT
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System of First Order Linear ODEs

Linear Independence

Let the solutions form the fundamental matrix Ψ(t), thus the
Wronskian is:

det (Ψ(t)) .

The system is linearly independent if the Wronskian is
non-zero.

Abel’s Formula
For the linear system in form:

x′ = Ax,

the Wronskian can be found by the trace of A, which is the sum of the
diagonals, that is:

W = Ce
∫

trace Adt = Ce
∫
(A1,1+A2,2+···+An,n)dt.

Differential Equations P LOT
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System of First Order Linear ODEs

Phase Portraits

In particular, we can sketch the linear system of R2 in terms of
phase portraits given the eigenvalues and eigenvectors.

For a node graph, we have it as (directions might vary):

x1

x2

x1

x2

Differential Equations P LOT
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System of First Order Linear ODEs

Repeated Eigenvalues

For repeated eigenvalue r with only one (linearly
independent) eigenvector, if a given a solution is x(1) = ξert,
the other solution would be:

x(2) = ξtert + ηert,
where (A − Ir) · η = ξ, and x(2) is called the generalized
eigenvector.

Algebraic Multiplicity and Geometric Multiplicity

The algebraic multiplicity refers to the multiplicity of root in the
characteristic polynomial, and the geometric multiplicity refers to the
dimension of the eigenspace associated with the eigenvalue.

The algebraic multiplicity will be no less than the geometric
multiplicity for each eigenvalue.

We need the generalized eigenvector when the algebraic multiplicity is
larger than the geometric multiplicity.

Differential Equations P LOT
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System of First Order Linear ODEs

Phase Portraits

In particular, we can sketch the linear system of R2 in terms of
phase portraits given the eigenvalues and eigenvectors.

For a node graph, we have it as (directions might vary):

x1

x2

x1

x2

Differential Equations P LOT
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System of First Order Linear ODEs

Phase Portraits

For a spiral/center graph, we have it as (directions might
vary):

x1

x2

x1

x2

Differential Equations P LOT
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System of First Order Linear ODEs

Phase Portraits

For repeated eigenvalues with less geometric multiplicity,
the solution is (directions might vary):

x1

x2

If the geometric multiplicity is the same, the graph is
simply a radial shape (directions might vary):

x1

x2

Differential Equations P LOT
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Non-linear Systems

Linear Approximation

For non-linear system
(

x
y

)′
=

(
F(x, y)
G(x, y)

)(
x
y

)′
, if F, G ∈ C2

and the system is locally linear, the approximation at critical
point (x0, y0) is:(

x − x0
y − y0

)′
=

(
x
y

)′
= J(x0, y0) ·

(
x − x0
y − y0

)
,

where Jacobian is:

J(x0, y0) =

(
Fx(x0, y0) Fy(x0, y0)
Gx(x0, y0) Gy(x0, y0)

)
.

Autonomous Systems

When
(

x
y

)′
=

(
F(y)
G(x)

)
, it can be solved implicitly for:

dy
dx

=
G(x)
F(y)

.

Differential Equations P LOT
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Non-linear Systems

Stability

For linearized system with eigenvalues r1, r2, the stability can
be concluded as follows:

Eigenvalues Linear System Nonlinear System
Type Stability Type Stability

Eigenvalues are λ1 and λ2
0 < λ1 < λ2 Node Unstable Node Unstable
λ1 < λ2 < 0 Node Asymptotically

Stable

Node Asymptotically

Stable

λ1 < 0 < λ2 Saddle Point Unstable Saddle Point Unstable
λ1 = λ2 > 0 Node Unstable Node or

Spiral Point
Unstable

λ1 = λ2 < 0 Node Asymptotically

Stable

Node or
Spiral Points

Asymptotically

Stable

Eigenvalues are λ1 = α + iβ and λ2 = α − iβ
α > 0 Spiral Point Unstable Spiral Point Unstable
α = 0 Center Stable Center or

Spiral Point
Indeterminate

α < 0 Spiral Point Asymptotically

Stable

Spiral Point Asymptotically

Stable

Differential Equations P LOT
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Non-linear Systems

Limit Cycles

A closed trajectory or periodic solution repeats back to itself
with period τ: (

x(t + τ)
y(t + τ)

)
=

(
x(t)
y(t)

)
.

Closed trajectories with either side converging to/diverging
from the solution is a limit cycle.

Conversion to Polar Coordinates
A Cartesian coordinate can be converted by:

x = r cos θ,
y = r sin θ,
rr′ = xx′ + yy′,
r2θ′ = xy′ − yx′.

Differential Equations P LOT
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Non-linear Systems

Limit Cycles

For a linear system x =

(
F(x, y)
G(x, y)

)
with F, G ∈ C1:

1 A closed trajectory of the system must enclose at least 1
critical point.

2 If it only encloses 1 critical point, then that critical point
cannot be saddle point.

3 If there are no critical points, there are no closed
trajectories.

4 If the unique critical point is saddle, there are no
trajectories.

5 For a simple connected domain D in the xy-plane with no
holes. If Fx + Gy had the same sign throughout D, then
there is no closed trajectories in D.

Differential Equations P LOT
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Laplace Transformation

Properties of Laplace Transformation

The Laplace Transformation of a function f is defined as:

L{ f (t)} = F(s) =
∫ ∞

0
e−st f (t)dt

Note that Laplace Transformation can be used on
non-continuous functions by utilizing step functions.

Differential Equations P LOT
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Laplace Transformation

Properties of Laplace Transformation

Laplace Transformation has the following properties:
1 Laplace Transformation is a linear operator:

L{ f + λg} = L{ f }+ λL{g}
2 Laplace Transformation for derivatives:

L{ f ′(t)} = sL{ f (t)} − f (0),

L{ f ′′(t)} = s2L{ f (t)} − s f (0)− f ′(0),
...

L{ f (n)(t)} = snF(s)− sn−1 f (0)− · · · − f (n−1)(0).
3 First Shifting Theorem:

L{ect f (t)} = F(s − c).
The Laplace Transformations can be used for solving IVP,
where the inverse helps to find the original function prior to
transformation.

Differential Equations P LOT
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Laplace Transformation

Elementary Laplace Transformations

The Laplace Transformations for elementary functions are
given in the following table, note that they can still be
calculated by its definition:

f (t) = L−1{F(s)} F(s) = L{ f (t)}

1
1
s

, s > 0

eat 1
s − a

, s > a

tn, n ∈ Z>0
n!

sn+1 , s > 0

sin(at)
a

s2 + a2 , s > 0

cos(at)
s

s2 + a2 , s > 0

sinh(at)
a

s2 − a2 , s > 0

cosh(at)
s

s2 − a2 , s > 0

f (ct)
1
c

F
( s

c

)

Differential Equations P LOT
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Laplace Transformation

Step Functions:

The step functions are defined by:

uc(t) = u(t − c) =

{
0, t < c,
1, t ≥ c.

And the Laplace Transformations of the step function is:

L{uc(t)} =
e−cs

s
.

The step function forms the Second Shifting Theorem:
L{uc(t) f (t − c)} = e−csF(s).

Differential Equations P LOT
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Laplace Transformation

Impulse Functions

The idealized unit impulse function δ(t), or Dirac delta
function, satisfies the properties that:

δ(t) = 0 for t ̸= 0 and
∫ ∞

−∞
δ(t)dt = 1.

There is no ordinary function satisfying the idealized unit
impulse function, so it is a generalized function.
A unit impulse at an arbitrary point t = t0, denoted by
δ(t − t0), follows that:

δ(t) = 0 for t ̸= t0 and
∫ ∞

−∞
δ(t − t0)dt = 1.

The Laplace Transformation of the impulse function is:
L{δ(t − c)} = e−cs.

Differential Equations P LOT
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Laplace Transformation

Convolution

The convolution of f and g, denoted ( f ∗ g), is defined as:

( f ∗ g)(t) =
∫ t

0
f (t − τ)g(τ)dτ =

∫ t

0
f (τ)g(t − τ)dτ.

The convolution f ∗ g has many of the properties of ordinary
multiplication:

1 Commutativity: f ∗ g = g ∗ f ;
2 Distributivity: f ∗ (g + h) = f ∗ g + f ∗ h;
3 Associativity: ( f ∗ g) ∗ h = f ∗ (g ∗ h);
4 Zero Property: f ∗ 0 = 0 ∗ f = 0, where 0 is a function that

maps any input to 0.
The Laplace Transformation of the convolution of f and g is:

L{( f ∗ g)(t)} = F(s)G(s).

Differential Equations P LOT
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Series Solutions to Second-Order Linear Equations

Power Series

A power series is an infinite series in the form:
∞

∑
n=0

an(x − c)n = a0 + a1(x − c) + a2(x − c)2 + · · · ,

where an is the coefficient for term n and c is the center of the
approximation.
A power series ∑∞

n=0 an(x − x0)n converge at a point x if:

lim
N→∞

N

∑
n=0

an(x − x0)
n exists for that x.

A power series converges pointwise on X if it converges on
every x ∈ X.

Differential Equations P LOT
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Series Solutions to Second-Order Linear Equations

Power Series

A power series converges absolutely at a point x if the power
series:

∞

∑
n=0

|an(x − x0)
n| =

∞

∑
n=0

|an||x − x0|n converges.

Note that absolute converges implies convergence, but the
converse is not true.

Differential Equations P LOT
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Series Solutions to Second-Order Linear Equations

Power Series

Here are some properties of series:
1 (Ratio test). If an ̸= 0, and if for a fixed value of x, and:

lim
n→∞

∣∣∣∣ an+1(x − x0)n+1

xn(x − x0)n

∣∣∣∣ = |x − x0| lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = |x − x0|L,

then the power series converges absolutely at x if
|x − x0|L < 1 and diverges if |x − x0|L > 1.

2 (Monotonic property). If the power series
∑∞

n=0 an(x − x0)n converges at x = x1, then it converges
absolutely for |x − x0| < |x1 − x0|. If it diverges at x = x1,
then it diverges for |x − x0| > |x1 − x0|.

3 (Radius of convergence). Let ρ > 0 be such that
∑∞

n=0 an(x − x0)n converges absolutely for |x − x0| < ρ and
diverges for |x − x0| > ρ, then ρ is the radius of convergence
and (x0 − ρ, x0 + ρ) is the interval of convergence.

Differential Equations P LOT
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Series Solutions to Second-Order Linear Equations

Power Series

Also, we note that power series can be added or subtracted
term-wise. They can also be multiplied and divided by having
divisions of terms.
Recall that by Taylor theorem, suppose f ∈ C∞, then we can
form the Taylor polynomial as a power series, with coefficient:

an =
f (n)(x0)

n!
.

In particular, if f has a Taylor polynomial at x0 with a positive
radius of convergence, we say the series is analytic at x0.

Differential Equations P LOT
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Series Solutions to Second-Order Linear Equations

Ordinary Point

Here, we are thinking of the second order homogeneous
differential equation, namely:

P(x)
d2y
dx2 + Q(x)

dy
dx

+ R(x)y = 0.

Additionally, we suppose that P, Q, and R are polynomials
and have no factor common factor (x − c). Thus, we have
P(x0) ̸= 0 being an ordinary point. When P(x0) = 0, it is a
singular point (or pole).

Differential Equations P LOT



PILOT Final Exam Review

Series Solutions to Second-Order Linear Equations

Ordinary Point

When we generalize, we will have:
d2y
dx2 + p(x)

dy
dx

+ q(x)y = 0,

where p and q are any functions. Similarly, consider x0 where
both p and q are analytic, x0 is ordinary, otherwise, it is
singular. Here, we say p(x) has singularity of a pole at x0 of
order n if:

(x − x0)
n p(x) is analytic at x0.

Assuming absolute convergence, one can apply the derivative
operator on the sequence, that is:

d
dx

[
lim

N→∞

N

∑
n=0

an(x − x0)
n

]
= lim

N→∞

[
d

dx

N

∑
n=0

an(x − x0)
n

]

= lim
N→∞

N

∑
n=1

ann(x − x0)
n−1.

Differential Equations P LOT
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Series Solutions to Second-Order Linear Equations

Ordinary Point

Often, we we apply the derivative operator, we will notice
some recurrence relation, that is the successive coefficients can
be evaluated one by one.
In particular, when we have a power series:

φ(x) =
∞

∑
n=0

an(x − x0)
n,

by taking the m-th derivative and evaluating it at 0, we will
have:

dm φ

dxm (x0) = m!am.

Differential Equations P LOT
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Series Solutions to Second-Order Linear Equations

Euler Equations

In the section, we go back to the focus of:
P(x)y′′ + Q(x)y′ + R(x)y = 0,

where P, Q, R are polynomials with no common factors.
For the Euler’s equation, we consider the differential equation
in the form:

x2y′′ + αxy′ + βy = 0.

Then, |x|r is a solution to the above differential equation if r is
a solution to r(r − 1) + αr + β = 0.

Differential Equations P LOT
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Series Solutions to Second-Order Linear Equations

Euler Equations

Let r1, r2 be the roots of r(r − 1) + αr + β = 0, then the solution
to the differential equation can be represented by:

When r1, r2 ∈ R and r1 ̸= r2, then:
y(x) = c1|x|r1 + c2|x|r2 .

When r1, r2 ∈ R and r := r1 = r2, then:
y(x) = c1|x|r + c2 log |x| · |x|r.

When r1, r2 = λ + iµ ∈ C and µ ̸= 0, then:
y(x) = c1|x|λ cos

(
µ log |x|

)
+ c2|x|λ sin

(
µ log |x|

)
.

Differential Equations P LOT
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Series Solutions to Second-Order Linear Equations

Regular Singular Point

Now, we want to research on the case when x0 is a regular
singular point, that is for equation:

y′′ + p(x)y′ + q(x)y = 0,
and x0 satisfies that:

1 x0 is a singular point, and
2 p(x) has a pole of order 1 and q(x) has a pole of order no

more than 2.
A singular point that is not regular is a irregular singular
point.
Without loss of generality, we may horizontally shift the
equation to obtain that x = 0 is a regular singular point. Then,
we may write:

xp(x) =
∞

∑
n=0

pnxn and x2q(x) =
∞

∑
n=0

qnxn

on some interval |x| < ρ within the radius of convergence.
Differential Equations P LOT
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Series Solutions to Second-Order Linear Equations

Regular Singular Point

Hence, we may multiply x2 on both side, giving us that:
x2y′′ + x

(
xp(x)

)︸ ︷︷ ︸
˜p(x)

y′ +
(
x2q(x)

)︸ ︷︷ ︸
q̃(x)

y = 0,

in which p̃ and q̃ are analytic at x = 0. Then, we will be able to
Euler Equations to solve for the differential equation with
respect to p̃ and q̃.

Differential Equations P LOT
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Numerical Methods

Euler’s Method

The numerical approximation focuses on first-order initial
value problem: 

dy
dt

= f (t, y),

y(t0) = y0.

By the Existence and Uniqueness Theorem, a unique solution
exists for some rectangular region containing (t0, y0) when f
and ∂ f

∂y are continuous. With this foundation, we may apply
Euler’s method on such region. (Note that out of the region,
the approximation would not be accurate.)

Differential Equations P LOT
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Numerical Methods

Euler’s Method

Euler’s method recursively applies the following function:
yn+1 = yn + f (tn, yn)(tn+1 − tn), n = 0, 1, 2, · · · ,

and when the steps are constrained to be a constant h, we have:
yn+1 = yn + h f (tn, yn), n = 0, 1, 2, · · · .

Typically, Euler’s method incurs error, whereas some typical
issues are:

1 When the step size h is too big, the error is significant.
2 When the step size h is too small, the cost of calculation is

expensive.
3 The computation does address the asymptotic behaviors.
4 When the vector field has steep components, the

approximation differs more.

Differential Equations P LOT
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Numerical Methods

Generalization on Euler’s Method

Euler’s method can be analyzed by using the Fundamental
Theorem of Calculus, that is:

y(t) = y(tn) +
∫ t

tn

f
(
s, y(s)

)
ds

≈ y(tn) + ∑
t0≤ti<ti+1≤t

f (ti, yn)(ti+1 − ti),

in which we may establish the improved Euler’s Method, by:

yn+1 = yn + h
(

f (tn, yn) + f (tn+1, yn + h f (tn, yn))

2

)
,

by considering the trapezoid approach for Riemann sum.
Since the f (t, y) depends only on t and not on y, then solving
differential equation reduced from y′ = f (t, y) to integrating
f (t), which makes the improved Euler’s Method into:

yn+1 = yn +
h
2
(

f (tn) + f (tn + h)
)
.

Differential Equations P LOT



Part 2:
Open Poll

We will work out some sample questions.

Please let us know if you have questions from the Review
Problem Sets or Weekly Problem Sets.
Let us know if you want to go through any concepts that
you are not sure with.



Thank you for being with Differential
Equations PILOT this semester.

Good luck on your finals, and best wished for your future
pursuits!

While you prepare for the final:

Collaborate with your friends and classmates to study together!

Get physically and mentally prepared. Get enough sleep and some
food before the exam!

Believe in yourself. You are amazing and you can make it this!
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