PILOT Quiz 1 Review

Differential Equations

Johns Hopkins University

Fall 2025

As you prepare for quiz 1, please consider the following resources:

- PILOT webpage for ODEs: https://jhu-ode-pilot.github.io/FA25/
 - Find the review problem sets for quiz 1.
 - Review the weekly problem sets 1 3.
- Review the homework/optional sets provided by the instructor.
- Join the PILOT Review Session. (You are here.)

Plan for today:

- **I** Go over all contents that we have covered for this semester so far.
- 2 In the end, we will open the poll to you. Please indicate which problems from the Review Set that you want us to go over.

Part 1: Contents Review

We will get through all contents over this semester.

- Feel free to download the slide deck from the webpage and annotate on it.
- If you have any questions, ask by the end of each chapter.
- 1 Preliminaries
- 2 First Order ODEs

Preliminaries

- Classifications of Differential Equations
 - ODEs vs PDEs
- Modeling Using ODEs
 - Half Life Problem

When having various differential equations, we can classify them by their properties.

ODEs vs PDEs

Ordinary Differential Equations (ODEs) involves ordinary derivatives $(\frac{dy}{dt})$, while Partial Differential Equations (PDEs) involves partial derivatives $(\frac{\partial y}{\partial t})$.

This course focuses on ODEs, and it can also be classified in various different ways:

- Single equation involves one unknown and one equation, while system of equations involves multiple unknowns and multiple equations.
- The order of the differential equation is the order of the highest derivatives term.
- Linear differential equations has only linear dependent on the function, while non-linear differential equations has non-linear dependent on the function.

ODEs can be used for modeling. During modeling, it often follows the following steps:

- Construction of the Models,
- 2 Analysis of the Models,
- 3 Comparison of the Models with Reality.

An example of modeling is the **half-life problem**.

Half Life Problem

The physics model for half life indicates the relationship between half life (τ) of a substance of amount N(t) with initial amount N_0 at a time t is:

$$N(t) = N_0 \left(\frac{1}{2}\right)^{\frac{t}{\tau}},$$

where the rate of decay (λ) and half life (τ) are related by:

$$\tau \times \lambda = \log 2$$
.

First Order ODEs

- Methods of Solving ODEs
 - Separable ODEs
 - Integrating Factor
- Existence and Uniqueness Theorems
- Autonomous ODEs
 - Rational Root Test
- Logistic Population Growth
 - Partial Fractions

Here, we will introduce various ways of solving ODEs:

Separable ODEs

For ODEs in form $M(t) + N(y)\frac{dy}{dt} = 0$, it can be separated by:

$$M(t)dt + N(y)dy = 0.$$

When the ODE is not separable, we may consider using the **integrating factor**.

Integrating Factor

For ODEs in form $\frac{dy}{dt} + a(t)y = b(t)$, the integrating factor is:

$$\mu(t) = \exp\left(\int a(t)dt\right).$$

• For an IVP in simple form:

$$\begin{cases} \frac{dy}{dt} = a(t)y + b(t), \\ y(t_0) = y_0. \end{cases}$$

If a(t) and b(t) are continuous on an interval (α, β) and $t_0 \in (\alpha, \beta)$. Then, there exists a uniqueness solution y for (α, β) to the IVP.

Picard's Theorem

■ For an IVP in general form:

$$\begin{cases} \frac{dy}{dt} = f(t, y), \\ y(t_0) = y_0. \end{cases}$$

For $t_0 \in I = (a,b)$, $y_0 \in J = (c,d)$, if f(t,y) and $\frac{\partial f}{\partial y}(t,y)$ are continuous on interval $I \times J$. Then, there exists a unique solution on a smaller interval $I' \times J' \subset I \times J$, in which $(t_0,y_0) \in I' \times J'$.

Only Contrapositive is Guaranteed to be True

For both theorems, you can conclude that if there does not exist a solution or the solution is not unique, then the conditions must not be satisfied. You **cannot** conclude that if the conditions are not satisfied, then there is no unique solution.

Autonomous ODEs are in form of:

$$\frac{dy}{dt} = f(y).$$

The stability (stable/semi-stable/unstable) of equilibrium can be determined by phase lines, *i.e.*, the zeros of the function f(t).

Rational Root Test

Let the polynomial with integer coefficients be defined as:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0,$$

then any rational root r = p/q such that $p, q \in \mathbb{Z}$ and gcd(p, q) = 1 satisfies that $p|a_0$ and $q|a_n$.

The logistic population growth model with population (y), growing rate (r), and carrying capacity (k) is given by:

$$\begin{cases} \frac{dy}{dt} = r\left(1 - \frac{y}{k}\right)y, \\ y(0) = y_0, \end{cases}$$

whose general solution is $y(t) = \frac{ky_0}{(k - y_0)e^{-rt} + y_0}$.

Partial Fractions

For a fraction in the form $\frac{C}{(x-a_1)^{n_1}(x-a_2)^{n_2}\cdots(x-a_m)^{n_m}}$, it can be decomposed in terms of:

$$\frac{C_{1,1}}{x-a_1}+\frac{C_{1,2}}{(x-a_1)^2}+\cdots+\frac{C_{1,n_1}}{(x-a_1)^{n_1}}+\cdots+\frac{C_{m,1}}{x-a_m}+\cdots+\frac{C_{m,n_m}}{(x-a_m)^{n_m}}.$$

Part 2: Open Poll

We will work out some sample questions.

- If you have a problem that you are interested with, tell us now.
- Otherwise, we will work through selected problems from the practice problem set.
- We are also open to conceptual questions with the course.

