

PILOT Quiz 2 Review

Differential Equations

Johns Hopkins University

Fall 2025

As you prepare for quiz 2, please consider the following resources:

- PILOT webpage for ODEs:
<https://jhu-ode-pilot.github.io/FA25/>
 - Find the review problem sets for quiz 2.
 - Consult the archives page for PILOT sets from the semester.
- Review the *homework/quiz sets* provided by the instructor.
- Join the PILOT Quiz 2 Review Session. (You are here.)

Plan for today:

- 1 Go over all contents that we have covered for this semester so far.
- 2 In the end, we will open the poll to you. Please indicate which problems from the Review Set that you want us to go over.

Part 1: Contents Review

We will get through all contents over this semester.

- Feel free to download the slide deck from the webpage and annotate on it.
- If you have any questions, ask by the end of each chapter.

1 First Order ODEs

2 Second Order ODEs

First Order ODEs

- Exactness Problem
 - Integrating Factor for Non-Exact Case
- Bifurcation
 - Bifurcation Diagram

The condition for a function in form $M(x, y) + N(x, y) \frac{dy}{dx} = 0$ to be exact is:

$$\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}.$$

For solving Exact ODEs, either finding $\int M(x, y)dx + h(y)$ or $\int N(x, y)dy + h(x)$ and taking partials again to fit gives the solution $\Psi(x, y) = C$.

Integrating Factor for Non-Exact Case

$$\mu(t) = \exp \left(\int \frac{M_y - N_x}{N} dx \right) \quad \text{or} \quad \mu(t) = \exp \left(\int \frac{N_x - M_y}{M} dy \right).$$

When a differential equation contains some unknown, fixed parameter C , its equilibria would exhibit different behavior, the bifurcation value is the critical value such that the equilibria have different stability.

Bifurcation Diagram

A bifurcation diagram is the vertical concatenation of phase portraits (C - y plot), in which the equilibria will be marked for respective values of C .

Second Order ODEs

- Linear Homogeneous Cases
 - Complex Characteristic Roots
 - Repeated Characteristic Roots
- Linear Independence
 - Definition of Linearly Independence
 - Superposition Principle
- Reduction of Order
 - Product Rule and Chain Rule

Consider the linear homogeneous ODE:

$$y'' + py' + qy = 0.$$

Its characteristic equation is $r^2 + pr + q = 0$, with real, distinct solutions r_1 and r_2 , the general solution is:

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.$$

Complex Characteristic Roots

If the solutions are complex, by Euler's Formula ($e^{it} = \cos t + i \sin t$), it can be written as $r_1 = \lambda + i\beta$ and $r_2 = \lambda - i\beta$, then the solution is:

$$y(t) = c_1 e^{\lambda t} \cos(\beta t) + c_2 e^{\lambda t} \sin(\beta t).$$

Repeated Characteristic Roots

If the solutions are repeated, the solution is:

$$y(t) = c_1 e^{rt} + c_2 t e^{rt}.$$

To form a fundamental set of solutions, the solutions need to be linearly independent, in which the Wronskian (W) must be non-zero, meaning that:

$$W[y_1, y_2] = \det \begin{pmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{pmatrix}.$$

Definition of Linearly Independence

By definition, a set of polynomials $\{f_1, f_2, \dots, f_n, \dots\}$ is linearly independent when for $\lambda_1, \lambda_2, \dots, \lambda_n, \dots \in \mathbb{F}$ (typically \mathbb{C}):

$$\lambda_1 f_1 + \lambda_2 f_2 + \dots + \lambda_n f_n + \dots = 0 \iff \lambda_1 = \lambda_2 = \dots = \lambda_n = \dots = 0.$$

Superposition Principle

If $y_1(t)$ and $y_2(t)$ are solutions to $l[y] = 0$, then the solution $c_1 y_1(t) + c_2 y_2(t)$ are also solutions for all constants $c_1, c_2 \in \mathbb{R}$.

For non-linear second order homogeneous ODEs, when one solution $y_1(t)$ is given, the other solution is in form:

$$y_2(t) = u(t) \cdot y_1(t).$$

Product Rule and Chain Rule

- **Product Rule:** $\frac{d}{dx}[f(x) \cdot g(x)] = \frac{df}{dx}(x)g(x) + f(x)\frac{dg}{dx}(x).$
- **Chain Rule:** $\frac{d}{dx}[f(g(x))] = \frac{df}{dx}(g(x)) \cdot \frac{dg}{dx}(x).$

Procedure of Reduction of Order

As long as $y_1(t)$ is a solution, you will be able to reduce the differential equation with respect to y_2 into a differential equation involving only $u''(t)$ and $u'(t)$ terms to solve for $\omega(t) = u'(t)$.

Part 2: Open Poll

We will work out some sample questions.

- If you have a problem that you are interested with, tell us now.
- Otherwise, we will work through selected problems from the practice problem set.
- We are also open to conceptual questions with the course.

Good luck on your second exam.