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1. Find the general solution for y = y(t):

y′ + 3y = t + e−2t,

then, describe the behavior of the solution as t→ ∞.
Solution:
Here, one could note that this differential equation is not separable but in the form of integrating
factor problem, then we find the integrating factor as:

µ(t) = exp
(∫ t

0
3ds
)
= exp(3t).

By multiplying both sides with exp(3t), we obtain the equation:

y′e3t + 3ye3t = te3t + e−2te3t.

Clearly, we observe that the left hand side is the derivative after product rule for ye3t and the right
hand side can be simplified as:

d
dt
[ye3t] = te3t + et.

Therefore, we have turned this into an integration problem, so we do the respective integrations,
giving us that:

ye3t =
∫

te3tdt +
∫

etdt

=
te3t

3
−
∫ 1

3
e3tdt + et + C

=
te3t

3
− e3t

9
+ et + C.

Eventually, we divide both sides by e3t to obtain that:

y(t) =
t
3
− 1

9
+ e−2t + Ce−3t .

As t→ ∞, the solution diverges to ∞.
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2. Given an initial value problem: 




dy
dt
− 3

2
y = 3t + 2et,

y(0) = y0.

(a) Find the integrating factor µ(t).

(b) Solve for the particular solution for the initial value problem.

(c) Discuss the behavior of the solution as t→ ∞ for different cases of y0.

Solution:

(a) As instructed, we look for the integrating factor as:

µ(t) = exp
(∫ t

0
−3

2
ds
)
= exp

(
−3

2
t
)

.

(b) With the integrating factor, we multiply both sides by µ(t) to obtain that:

y′e−3t/2 − 3
2

ye−3t/2 = 3te−3t/2 + 2ete−3t/2.

Clearly, we observe that the left hand side is the derivative after product rule for ye−3t/2 and
the right hand side can be simplified as:

d
dt

[
ye−3t/2

]
= 3te−3t/2 + 2e−t/2.

Therefore, we have turned this into an integration problem, so we do the respective integrations,
giving us that:

ye−3t/2 =
∫

3te−3t/2dt +
∫

2e−t/2dt

= −2te−3t/2 + 2
∫

e−3t/2dt− 4r−t/2 + C

= −2te−3t/2 − 4
3

e−3t/2 − 4r−t/2 + C.

Then, we divide both sides by e−3t/2 to get the general solution:

y(t) = −2t− 4
3
− 4et + Ce3t/2.

Given the initial condition, we have that:

y0 = 0− 4
3
− 4 + C,

which implies C = 16/3 + y0, leading to the particular solution that:

y(t) = −2t− 4
3
− 4et +

(
16
3

+ y0

)
e3t/2 .

(c) We observe that:

lim
t→∞

y(t) = lim
t→∞

[
−2t− 4

3
− 4et +

(
16
3

+ y0

)
e3t/2

]
.

Note that the important terms are et and e3t/2, we need to care the critical value −16/3:

• when y0 > −16/3, y(t)→ ∞ when t→ ∞ ,

• when y0 ≤ −16/3, y(t)→ −∞ when t→ ∞ .
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3. An autonomous differential equation is given as follows:
dy
dt

= 4y3 − 12y2 + 9y− 2 where t ≥ 0 and y ≥ 0.

Draw a phase portrait and sketch a few solutions with different initial conditions.
Solution:
Recall the Rational root test (c.f. §1.3). Let the polynomial with integer coefficients be defined as:

anxn + an−1xn−1 + · · ·+ a0 = 0,

then any rational root r = p/q such that p, q ∈ Z and gcd(p, q) = 1 satisfies that p|a0 and q|an.
From the theorem, we can note that if the equation has a rational root, it must be one of:

r = ±1,±2,±1
2

,±1
4

.

By plugging in, one should notice that y = 2 is a root (one might also notice 1/2 is a root as well,
but we will get the step slowly), so we can apply the long division (dividing y− 2) to obtain that:

4y3 − 12y2 + 9y− 2
y− 2

= 4y2 − 4y + 1.

Clear, we can notice that the right hand side is a perfect square (else, you could use the quadratic
formula) that:

4y2 − 4y + 1 = (2y− 1)2.

Thus, we now know that the roots are 2 and 1/2 (multiplicity 2). Hence, the phase portrait is:

1/2 2←− ←− −→
Semi-Stable Unstable

Correspondingly, we can sketch a few solutions (not necessarily in scale):

t

y

1/2

2
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4. Determine if the following differential equation is exact. If not, find the integrating factor to make it
exact. Then, solve for its general solution:

y′(x) = e2x + y(x)− 1.

Solution:
First, we write the equation in the general form:

dy
dx

+ (1− e2x − y) = 0.

Now, we take the partial derivatives to obtain that:
∂

∂y
[1− e2x − y] = −1,

∂

∂x
[1] = 0.

Notice that the mixed partials are not the same, the equation is not exact .
Here, we choose the integrating factor as:

µ(x) = exp

(∫ x

0

∂
∂y [1− e2s − y]− ∂

∂s [1]

1
ds

)

= exp
(∫ x

0
−ds

)
= exp(−x).

Therefore, our equation becomes:

(e−x)
dy
dx

+ (e−x − ex − ye−x) = 0.

After multiplying the integrating factor, it would be exact. We leave the repetitive check as an exercise to
the readers.
Now, we can integrate to find the solution with a h(y) as function:

ϕ(x, y) =
∫
(e−x − ex − ye−x)dx = −e−x − ex + ye−x + h(y).

By taking the partial derivative with respect to y, we have:

∂y ϕ(x, y) = e−x + h′(y),

which leads to the conclusion that h′(y) = 0 so h(y) = C.
Then, we can conclude that the solution is now:

ϕ(x, y) = −e−x − ex + ye−x + C = 0,

which is equivalently:

y(x) = C̃ex + 1 + e2x .
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5. For the first-order autonomous ODE:
dy
dt

= sin y + C,

where C ∈ R is a parameter. Determine any and all bifurcation values for the parameter C and
sketch a bifurcation diagram.
Solution:
It is not hard to observe that sin y will intersect the axis infinitely many times, while sin(R) = [−1, 1],
one shall then realize that the bifurcation value would be ±1, since when C > 1 or C < −1, there
will be no equilibriums at all.
Therefore, the bifurcation diagram can be illustrated as:

C

y

(1, 3π/2)
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6. Let an initial value problem be defined as follows:




(
12x4 + 5x2 + 6

) dy
dx
−
(

x2 sin(x) + x3)y = 0,

y(0) = 1.

Show that the solution to the above initial value problem is symmetric about x = 0.
Solution:
If you were attempting to solve this problem by integrating factor or exactness, you are on the wrong
track. The functions are deliberately chosen so that these operations will be hardly possible.
However, this does not necessarily mean that is it not possible to prove without solving the solution
out, one shall utilize the existence and uniqueness theorem to proceed.
Proof. Now, we first observe that when we rewrite the problem, we have:

y′ =
x2 sin(x) + x3

12x4 + 5x2 + 6
y,

where we clearly notice that the numerator and denominator are composed of continuous function
while the denominator is positive, so we know that it is continuous over R, so the initial value
problem exhibits a unique solution.
Now, suppose y(x) is a solution of the above IVP, we want to show that ỹ(x) := y(−x) is also a
solution to the above IVP.
Clearly, we have:

ỹ(0) = y(−0) = y(0) = 1,

so the initial condition is satisfied, so we are left to check the differential equation. By chain rule, we
have:

dỹ
dx

(x) =
dy
dx

(−x) · d
dx

[−x] = −ỹ′(x).

With the first equation and y being a solution, we can make all x into −x to obtain that:
(
12(−x)4 + 5(−x)2 + 6

)dy(−x)
dx

−
(
(−x)2 sin(−x) + (−x)3)ỹ = 0,

and if we organize the left hand side, we have:
(
12x4 + 5x2 + 6

)
ỹ′ −

(
x2 sin(x) + x3)ỹ = 0,

so ỹ is clearly another solution to the IVP, so by uniqueness, we must have ỹ(x) = y(x), or namely
y(−x) = y(x), so the solution must be symmetric about x = 0. !
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