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1. Solve the following second order differential equations for y = y(x):

y′′ + y′ − 132y = 0.(a)

y′′ − 4y′ = −4y.(b)

y′′ − 2y′ + 3y = 0.(c)

Solution:

(a) We find the characteristic polynomial as r2 + r − 132 = 0, which can be trivially factorized into:

(r − 11)(r + 12) = 0,

so with roots r1 = 11 and r2 = −12, we have the general solution as:

y(x) = C1e11x + C2e−12x .

(b) We turn the equation to the standard form y′′ − 4y′ + 4 = 0, and find the characteristic polyno-
mial as r2 − 4r + 4 = 0, which can be factorized into:

(r − 2)2 = 0,

so with roots r1 = r2 = 2 (repeated roots), we have the general solution as:

y(x) = C1e2x + C2xe2x .

(c) We find the characteristic polynomial as r2 − 2r + 3 = 0, which the quadratic formula gives:

r =
2 ±

√
22 − 4 × 3

2
= 1 ± i

√
2

so with roots r1 = 1 + i
√

2 and r2 = 1 − i
√

2, we would have the solution:

y(x) = C1e(1+i
√

2)x + C2e(1−i
√

2)x.

To obtain real solution, we apply Euler’s identity:

y1(x) = ex( cos(
√

2x)− i sin(
√

2x)
)

and y2(x) = ex( cos(−
√

2x)− i sin(−
√

2x)
)
.

By the principle of superposition, we can linearly combine the solutions:

ỹ1(x) =
1
2
(y1 + y2) = ex cos(

√
2x) and ỹ2(x) =

1
2
(y2 − y1) = ex sin(

√
2x).

One can verify that ỹ1 and ỹ2 are linearly independent by taking Wronskian,i.e.:

W[ỹ1, ỹ2] = det

(
ex cos(

√
2x) ex sin(

√
2x)

ex cos(
√

2x)−
√

2ex sin(
√

2x) ex sin(
√

2x) +
√

2ex cos(
√

2x)

)
=

√
2e2x ̸= 0.

Now, they are linearly independent, so we have the general solution as:

y(x) = C1ex cos(
√

2x) + C2ex sin(
√

2x) .
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2. Given a differential equation for y = y(t) being:

t3y′′ + ty′ − y = 0.

(a) Verify that y1(t) = t is a solution to the differential equation.

(b) Find the full set of solutions using reduction of order.

(c) Show that the set of solutions from part (b) is linearly independent.

Solution:

(a) Proof. We note that the left hand side is:

t3y′′1 + ty′1 − y1 = t3 · 0 + t · 1 − t = t − t = 0.

Hence y1(t) = t is a solution to the differential equation.

(b) By reduction of order, we assume that the second solution is y2(t) = tu(t), then we plug y2(t)
into the equation to get:

2t3u′(t) + t4u′′(t) + tu(t) + t2u′(t) = t4u′′(t) + (2t3 + t2)u′(t) = 0.

Here, we let ω(t) = u′(t) to get a first order differential equation:

t2ω′(t) = (−2t − 1)ω(t).

Clearly, this is separable, and we get that:
ω′(t)
ω(t)

= −2t + 1
t2 = −2

t
− 1

t2 ,

which by integration, we have obtained that:

log
(
ω(t)

)
= −2 log t +

1
t
+ C.

By taking exponentials on both sides, we have:

ω(t) = exp
(
−2 log t +

1
t
+ C

)
= C̃e1/t · 1

t2 .

Recall that we want u(t) instead of ω(t), so we have:

u(t) =
∫

ω(t)dt = C̃
∫

e1/t · 1
t2 dt = −C̃e1/t + D.

By multiplying t, we obtain that:
y2 = −C̃te1/t + Dt,

where Dt is repetitive in y1, so we get:

y(t) = C1t + C2te1/t .

(c) Proof. We calculate Wronskian as:

W[t, te1/t] = det

(
t te1/t

1 e1/t − e1/t

t

)
= −e1/t ̸= 0,

hence the set of solutions is linearly independent.
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3. Given the following second order initial value problem:
d2y
dx2 + cos(1 − x)y = x2 − 2x + 1,

y(1) = 1,
dy
dx

(1) = 0.

Prove that the solution y(x) is symmetric about x = 1, i.e., satisfying that y(x) = y(2 − x).
Hint: Consider the interval in which the solution is unique.
Solution:
Note that I deliberately messed up with all the messy functions. Not only haven’t I found a solution
to the system, Wolfram cannot have an elementary solution as well. Hence, we need to think,
alternatively, on some theorems.

Proof. Here, we suppose that y(x) is a solution, and we want to show that y(2− x) is also a solution.
First we note that we can think of taking the derivatives of y(2 − x), by the chain rule:

d
dx

[y(2 − x)] = −y′(2 − x),

d2

dx2 [y(2 − x)] = y′′(2 − x).

Now, if we plug in y(2 − x) into the system of equations, we have:

• First, for the differential equation, we have:

d2

dx2 [y(x − 2)] + cos(1 − x)y(x − 2) = y′′(2 − x) + cos(x − 1)y(2 − x)

= y′′(2 − x) + cos
(
1 − (2 − x)

)
y(2 − x)

= y′′(x) + cos(1 − x)y(x)

= x2 − 2x + 1 = (x − 1)2 = (1 − x)2

=
(
(2 − x)− 1

)2
= (2 − x)2 − 2(2 − x) + 1.

• For the initial conditions, we trivially have that:

y(1) = y(2 − 1) and y′(1) = y′(2 − 1).

Hence, we have shown that y(2 − x) is a solution if y(x) is a solution.
Again, we observe the original initial value problem that:

cos(1 − x) and x2 − 2x + 1 are continuous on R.

Therefore, by the existence and uniqueness theorem for second order linear case, there could be only one
solution, which forces that:

y(x) = y(2 − x),

so the solution is symmetric about x = 1, as desired.
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4. Solve the general solution for y = y(t) to the following second order non-homogeneous ODEs.

y′′ + 2y′ + y = e−t.(a)

y′′ + y = tan t.(b)

Solution:

(a) First, we look for homogeneous solution, i.e., y′′ + 2y′ + y = 0, whose characteristic equation is:

r2 + 2r + 1 = (r + 1)2 = 0,

with root(s) being −1 with multiplicity of 2, so the general solution to homogeneous case is:

yg(t) = C1e−t + C2te−t.

Notice that the non-homogeneous part is e−t, but we have e−t and te−t as general solutions
already, so we have our guess of particular solution as:

yp(t) = At2e−t.

By taking the derivatives, we have:

y′p(t) = A(2te−t − t2e−t) and y′′p(t) = A(2e−t − 4te−t + t2et).

We simply plug in the particular solution, so we have:

A(2e−t − 4te−t + t2et) + 2A(2te−t − t2e−t) + At2e−t = e−t

2Ae−t = e−t

A =
1
2

.

Hence, our solution to the non-homogeneous case is:

y(t) = C1e−t + C2te−t +
1
2

t2e−t .

(b) Here, we still look for homogeneous solutions, i.e., y′′ + y = 0, whose characteristic equation is:

r2 + 1 = 0,

with roots ±i. Since we are dealing with real valued functions, we have the general solution as:

yg = C1 sin t + C2 cos t.

Note that tan t does not work with undetermined coefficients, we must use the variation of
parameters, the Wronskian of our solution is:

W[sin t, cos t] = det

(
sin t cos t
cos t − sin t

)
= − sin2 t − cos2 t = −1.

Now, we may use the formula, namely getting the particular solution as:

yp = sin t
∫ − cos t · tan t

−1
dt + cos t

∫ sin t · tan t
−1

dt

= sin t
∫

sin tdt − cos t
∫ sin2 t

cos t
dt

= sin t(− cos t + C)− cos t
∫ 1 − cos2 t

cos t
dt

Continues on the next page...
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Continued from last page.

= − sin t cos t − cos t
(∫

sec tdt −
∫

cos tdt
)

= − sin t cos t − cos t (log | sec t + tan t| − sin t + C)

= − sin t cos t + sin t cos t − cos t log | sec t + tan t|

= − cos t log | sec t + tan t|.

Hence, our solution to the non-homogeneous case is:

y(t) = C1 sin t + C2 cos t − cos t log | sec t + tan t| .
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5. Solve for the general solution to the following higher order ODE.

4
d4y
dx4 − 24

d3y
dx3 + 45

d2y
dx2 − 29

dy
dx

+ 6y = 0.(a)

d4y
dx4 + y = 0.(b)

Hint: Consider the 8-th root of unity, i.e., ζ8, and verify which roots satisfies the polynomial.
Solution:

(a) Note that we obtain the characteristic equation as:

4r4 − 24r3 + 45r2 − 29r + 6 = 0.

To obtain our roots, we use the Rational Root Theorem, so if the characteristic equation has
any rational root, it must have been one (or more) of the following:

±1,±2,±3,±1
2

,±3
2

.

From plugging in the values, we notice that 2 and 3 are roots of the characteristic equation, by
division, we have:

4r4 − 24r3 + 45r2 − 29r + 6
(r − 2)(r − 3)

= 4r2 − 4r + 1 = (2r − 1)2.

Now, we know that the roots are 2, 3, and 1/2 with multiplicity 2, thus the solution to the
differential equation is:

y(x) = C1e2x + C2e3x + C3ex/2 + C4xex/2 .

Again, we invite readers to verify the Rational Root Theorem.

(b) For this general solution, we trivially obtain that the characteristic polynomial is:

r4 + 1 = 0.

Recall that the root of unity address for the case when rn = 1, so we consider the 8th root of
unity, in which (ζ8)

8 = 1. Now, recall Euler’s Identity and deMoivre’s formula, we note that
only the odd powers of the 8th root of unity satisfies that r4 = −1, namely, are:

ζ8 = cos
(π

4

)
+ i sin

(π

4

)
=

√
2

2
+ i

√
2

2
,

ζ3
8 = cos

(
3π

4

)
+ i sin

(
3π

4

)
= −

√
2

2
+ i

√
2

2
,

ζ5
8 = cos

(
5π

4

)
+ i sin

(
5π

4

)
= −

√
2

2
− i

√
2

2
,

ζ7
8 = cos

(
7π

4

)
+ i sin

(
7π

4

)
=

√
2

2
− i

√
2

2
.

Also, we note that ζ8 and ζ7
8 are complex conjugates, whereas ζ3

8 and ζ5
8 are complex conjugates,

so we can linearly combine them to obtain the set of linearly independent solutions, i.e.:

y(x) =

e (
√

2/2)x

[
C1 cos

(√
2

2
x

)
+ C2 sin

(√
2

2
x

)]

+ e−(
√

2/2)x

[
C3 cos

(√
2

2
x

)
+ C4 sin

(√
2

2
x

)] .
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6. Let a system of differential equations of xi(t) be as follows:x′1 = 3x1 + 2x2, x1(1) = 0,

x′2 = x1 + 4x2, x2(1) = 2.

(a) Solve for the solution to the initial value problem.

(b) Identify and describe the stability at equilibrium(s).

Solution:

(a) Here, we denote x =
(

x1 x2
)⊺, so our system becomes:

x′ =

(
3 2
1 4

)
x, x(1) =

(
0
2

)
.

Here, the eigenvalues are solutions to:

det

(
3 − λ 2

1 4 − λ

)
= 0,

which simplifies to λ2 − 7λ + 10 = 0, and further gives λ1 = 2, λ2 = 5. Then, we look for
eigenvectors of the matrix:

• For λ1 = 2, we have

(
1 2
1 2

)
ξ1 = 0, which gives that ξ1 = x2

(
−2
1

)
.

• For λ2 = 5, we have

(
−2 2
1 −1

)
ξ2 = 0, which gives that ξ2 = x1

(
1
1

)
.

Now, the general solution must be:

x = C1

(
−2
1

)
e2t + C2

(
1
1

)
e5t,

and by plugging in the initial condition, we have:−2C1e2 + C2e5 = 0,

C1e2 + C2e5 = 2.

In which the solution is C1 = 2
3e2 and C2 = 4

3e5 , so the solution is:x1 = − 4
3 e2t−2 + 4

3 e5t−5,

x2 = 2
3 e2t−2 + 4

3 e5t−5.

(b) Now, we consider the equilibrium at x =
(
0 0
)⊺, in which we note that both eigenvalues are

positive, meaning that this is an unstable node .
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