

Additional Materials: A Small “Dilemma”

Differential Equations

Spring 2026

Let a first order IVP on $y := y(t)$ be defined as follows:

$$\begin{cases} y' = \frac{2}{t}y, \\ y(1) = 1. \end{cases}$$

- (a) Find the solution to the above initial value problem.
- (b) Here is a theorem on the existence and uniqueness of ODEs (can be shown in the gist of integrating factor), as follows:

For an IVP in simple form:

$$\begin{cases} \frac{dy}{dt} = a(t)y + b(t), \\ y(t_0) = y_0. \end{cases}$$

For some $I = (\alpha, \beta) \ni t_0$, if $a(t)$ and $b(t)$ are continuous on the interval I . Then, there exists a unique solution to the IVP on the interval I .

Show that the IVP in this problem does not satisfy the condition for the existence and uniqueness theorem for \mathbb{R} .

- (c) Does the above example violates the existence and uniqueness theorem? Why?

The solutions to this additional problem is on the next page...

Solutions to the Additional Problem:

(a) This problem is clearly separable, we may compute:

$$\begin{aligned}\frac{dy}{y} &= 2 \frac{dt}{t} \\ \int \frac{dy}{y} &= 2 \int \frac{dt}{t} \\ \log |y| &= 2 \log |t| + C \\ y &= \tilde{C}t^2.\end{aligned}$$

Note that the initial condition enforces that $y(1) = 1$, so the solution is just:

$$y = \boxed{t^2}.$$

(b) Note that $a(t) = 2/t$, which is not continuous over $(-\infty, 0) \cup (0, \infty)$, then the theorem does not guarantee the existence and uniqueness of a solution over \mathbb{R} .

(c) This is not a violation since the converse of the theorem is not necessarily true. In propositional logic, if A implies B (written as $A \implies B$), the converse (B implies A , written as $B \implies A$) is not necessarily true. Hence, we can still have a solution that is unique over \mathbb{R} .