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1. Solve the following initial value problem, represent your solution as a fundamental matrix:

x′ =

(
1 −4
4 −7

)
x, x(0) =

(
3
2

)
.

Solution:
Here, we first find the eigenvalues for the matrix, that is:

det

(
1 − λ −4

4 −7 − λ

)
= 0.

Therefore, the polynomial is (1 − λ)(−7 − λ) + 16 = (λ + 3)2 = 0, hence the eigenvalues is λ1 =

λ2 = −3. Then, we look for the eigenvectors.

• For λ1 = −3, we have

(
4 −4
4 −4

)
ξ1 = 0, which is ξ1 = x

(
1
1

)
.

• For λ2 = −3, we have

(
4 −4
4 −4

)
η =

(
1
1

)
, which is η =

(
x

x − 1/4

)
=

(
0

−1/4

)
.

Hence, the general solution is:

x = C1e−3t

(
1
1

)
+ C2

(
te−3t

(
1
1

)
+ e−3t

(
0

−1/4

))
.

By the initial condition, we have x(0) =

(
3
2

)
, so:

x(0) =

(
C1 + 0

C1 − C2/4

)
=

(
3
2

)
.

Therefore, C1 = 3 and C2 = 4, so the particular solution is:

x(t) =

(
3
2

)
e−3t +

(
4
4

)
te−3t .
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2.∗ Let a system of differential equations be defined as follows, find its general solutions:

x′ =

1 0 4
1 1 3
0 4 1

 x, x ∈ R3.

Solution:
Again, we first find the eigenvalues of the equation, i.e.:

det

1 − λ 0 4
1 1 − λ 3
0 4 1 − λ

 = 0,

which is (1 − λ)3 + 16 − 12(1 − λ) = −λ3 + 3λ2 + 9λ + 5 = −(λ + 1)2(λ − 5) = 0.
Hence, the eigenvalues are λ1 = λ2 = −1 and λ3 = 5. Now, we look for eigenvectors.

• For λ1 = −1, we have

2 0 4
1 2 3
0 4 2

 ξ1 = 0, which is x

−4
−1
2

.

• For λ2 = −1, we have

2 0 4
1 2 3
0 4 2

 η =

−4
−1
2

, which is η =

 4x
x + 1

−2x − 1

 =

 0
1
−1

.

• For λ3 = 5, we have

−4 0 4
1 −4 3
0 4 −4

 ξ3 = 0, which is x

1
1
1

.

Hence, the solution is:

x = C1e−t

−4
−1
2

+ C2

te−t

−4
−1
2

+ e−t

 0
1
−1


+ C3e5t

1
1
1

 .
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3.∗∗ Let Id ∈ L(Rn) be the identity map in an n-dimensional Euclidean space, show that the following
equality holds for matrix exponential:

exp(Id) = e · Id .

Hint: Consider the matrix exponential and the Taylor expansion of exp(x).

Solution:

Proof. Here, we first note that, by definition:

Idk = Id for all k ∈ N,

thus, we want to expand the matrix exponential as follows:

exp(Id) =
∞

∑
k=0

1
k!

Idk

=
∞

∑
k=0

1
k!

Id

=

(
∞

∑
k=0

1
k!

)
Id .

Recall that the Taylor expansion of ex at 0 is:

ex ∼
∞

∑
k=0

1
k!

e0(x − 0)k =
∞

∑
k=0

1
k!

xk.

Evaluating the above equation at 1 gives that:
∞

∑
k=0

1
k!

= e1 = e,

and hence, we have the matrix exponential as:

exp(Id) = e · Id,

as desired.
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4. Let M be a square matrix, M is defined to be nilpotent if Mk = 0 for some positive integer k.

(a) Show that N =

0 2 3
0 0 1
0 0 0

 is nilpotent, then write down the result of exp(N).

Now, suppose that N ∈ L(Rn) is a square matrix and is nilpotent.

(b)∗ If all the entries in N are rational, show that exp(N) has rational entries.

(c)∗∗ Suppose that Idn ∈ L(Rn) is the identity matrix, prove that Idn +N is invertible.
Hint: Use the differences of squares for matrices.

Solution:

(a) proof of N is nilpotent. Here, we want to do the matrix multiplication:

N2 =

0 2 3
0 0 1
0 0 0

 ·

0 2 3
0 0 1
0 0 0

 =

0 0 2
0 0 0
0 0 0

 ,

N3 =

0 0 2
0 0 0
0 0 0

 ·

0 2 3
0 0 1
0 0 0

 =

0 0 0
0 0 0
0 0 0

 .

Now, we have shown that N3 = 0, or the zero matrix, hence N is nilpotent.

Then, we want to calculate the matrix exponential, that is:

exp(N) =
∞

∑
k=0

1
k!

Nk =

1 0 0
0 1 0
0 0 1

+

0 2 3
0 0 1
0 0 0

+
1
2

0 0 2
0 0 0
0 0 0

 =

1 2 4
0 1 1
0 0 1

 .

(b) Proof. By the definition that N is nilpotent, we know that Nm = 0 for some finite positive integer
m, hence, we can make the (countable) infinite sum into a finite sum:

exp(N) =
∞

∑
k=0

1
k!

Nk =
m

∑
k=0

1
k!

Nk,

thus all the entries are sum and non-zero divisions of rational numbers, while rational numbers
are closed under addition and non-zero divisions, hence, all entries of exp(N) is rational.

(c) Proof. Here, we recall the differences of squares still works when commutativity for multiplica-
tions fails, hence the we can still use it for matrix multiplication, namely, for all m ∈ Z+:

(Idn +N) · (Idn −N) · (Idn +N2) · · · (Idn +N2m
) = Idn −N2m+1

Since N is nilpotent, this implies that we have some k such that Nℓ = 0 for all ℓ ≥ k. Meanwhile,
note that 2ℓ ≥ ℓ for all positive integer ℓ. (This can be proven by induction.) Therefore, we
select m + 1 ≥ k so that N2m+1 = 0, and we have:

(Idn +N) ·
[
(Idn −N) · (Idn +N2) · · · (Idn +N2m

)
]
= Idn,

thus Idn +N is invertible.

Note that the elements of all n-by-n matrices can be considered as a ring, while nilpotent can be
defined more generally for rings. We invite capable readers to investigate more properties of nilpotent
elements of rings in the discipline of Modern Algebra.
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5. Suppose a matrix M ∈ L(R2) is a rotational matrix by an angle θ (counter-clockwise), then:

M =

(
cos θ − sin θ

sin θ cos θ

)
.

(a)∗ Show that M⊺ = M−1.

(b)∗∗ Let θ = 2π/k be fixed, where k is an integer. Find the least positive integer n such that
Mn = Id2. Here, n is called the order of M.
Hint: Consider the rotational matrix geometrically, rather than arithmetically.

(c)∗∗ Let θ = π/2, calculate the matrix exponential exp(M).
Hint: Consider the order of M and the Taylor series of ex, e−x, sin x and cos x.

Solution:

(a) Proof. Here, we recall the method of inverting a matrix:

M−1 =
1

det M

(
cos θ −

(
− sin θ

)
− sin θ cos θ

)
=

1
cos2 θ + sin2 θ

(
cos θ sin θ

− sin θ cos θ

)
= M⊺.

(b) Look, we want to analyze this geometrically, if θ = 2π/k, then that implies that M is a counter-
clockwise rotation of 2π/k, and since a full revolution is 2π, this implies a rotation of k times
will make restore to the original vector, i.e., Mk = Id2. Moreover, for any positive integer less
than k, we cannot rotate back to 2π, which implies that the order of M is 2 .

(c) Here, we construct the matrix exponential, note that the order of M is 4, we have:

exp(M) =
∞

∑
k=0

1
k!

Mk.

Here, we want to consider each entry respectively, since each entry is finite and since M has
order 4, the absolute value of the sum of the entries must be finite, so each entry converges
absolutely, hence we are free to change the order of the sum, so we have:

exp(M) =
∞

∑
k=0

1
(4k + 1)!

M +
∞

∑
k=0

1
(4k + 2)!

M2 +
∞

∑
k=0

1
(4k + 3)!

M3 +
∞

∑
k=0

1
(4k)!

Id .

For the 4 sums of factorials, we note that the Taylor series of ex, e−x, sin x and cos x at 0 evaluated
at x = 1 are, respectively:

e1 = +
1
0!

+
1
1!

+
1
2!

+
1
3!

+
1
4!

+
1
5!

+ · · ·

e−1 = +
1
0!

− 1
1!

+
1
2!

− 1
3!

+
1
4!

− 1
5!

+ · · ·

sin 1 = +
1
1!

− 1
3!

+
1
5!

− · · ·

cos 1 = +
1
0!

− 1
2!

+
1
4!

− · · ·

Since the first series converges, we know that the later three series converges absolutely, so we
are free to move around terms.

Continues on the next page...
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Continued from last page.

From the expressions, by columns, we can observe that:
∞

∑
k=0

1
(4k + 1)!

=
e1 − e−1

4
+

sin 1
2

,
∞

∑
k=0

1
(4k + 2)!

=
e1 + e−1

4
− cos 1

2
,

∞

∑
k=0

1
(4k + 4)!

=
e1 − e−1

4
− sin 1

2
,

∞

∑
k=0

1
(4k)!

=
e1 + e−1

4
+

sin 1
2

.

Now, we shall also evaluate the matrices generated by M, that is:

M =

(
0 −1
1 0

)
, M2 =

(
−1 0
0 −1

)
,

M3 =

(
0 1
−1 0

)
, M4 =

(
1 0
0 1

)
.

Therefore, considering the four entries

(
a b
c d

)
, we have:

a = − e + 1/e
4

+
cos 1

2
+

e + 1/e
4

+
sin 1

2
=

cos 1 + sin 1
2

,

b = − e − 1/e
4

− sin 1
2

+
e − 1/e

4
− sin 1

2
= −2 sin 1,

c =
e − 1/e

4
+

sin 1
2

− e − 1/e
4

+
sin 1

2
= 2 sin 1,

d = − e + 1/e
4

+
cos 1

2
+

e + 1/e
4

+
sin 1

2
=

cos 1 + sin 1
2

.

Therefore, the matrix exponential is:

exp(M) =


cos 1 + sin 1

2
−2 sin 1

2 sin 1
cos 1 + sin 1

2

 .

In particular, mathematicians has considered the rotation and flipping of regular polygons as the
dihedral groups, where symmetries and combinatorics play an important role. Please think of ways
you may “manipulate” a polygon such that the polygon looks the same.
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6. Let a non-linear system be:
dx
dt

= x − y2 and
dy
dt

= x + x2 − 2y.

Verify that (0, 0) is a critical point and classify its type and stability.

Solution:

proof that (0, 0) is critical point. The verification of (0, 0) being a critical point is trivial. We check that
dx/dt and dy/dt evaluated at (0, 0) are:

dx
dt

∣∣∣∣
(0,0)

= 0 and
dy
dt

∣∣∣∣
(0,0)

= 0,

and hence (0, 0) is a critical point.

In particular, denoting x = (x, y), we verify the linear approximation as:

x′ =

(
1 0
1 −2

)
x,

and we note that the eigenvalues are λ1 = 1 and λ2 = −2, and by:

λ2 < 0 < λ1,

we know that we have a unstable saddle point at (0, 0).
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7. Let a system of non-linear differential equations be defined as follows:x′ = 2x + 3y2,

y′ = x + 4y2.

Find all equilibrium(s) and classify their stability locally.

Solution:
Here, we note that the equilibrium(s) is achieved if and only if x′ = y′ = 0, that is:2x + 3y2 = 0,

x + 4y2 = 0.

In particular, we consider z = y2, so we have a system of linear equations, that is:2x + 3z = 0,

x + 4z = 0.

Meanwhile, the above system simplifies to x = y = 0, hence the only equilibrium is at (x, y) = (0, 0).
Then, we consider the system locally, denoting x = (x, y), that is:

x′ =

(
2 0
1 0

)
x,

where the eigenvalues are λ1 = 2 and λ2 = 0. Note that one eigenvalue is zero and the other is
positive, then the critical point is unstable .
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8. Let a system of equations for x = (x1, x2) ∈ R2 be:

x′ =

(
F(x)
F(x)

)
Suppose that F(x1, x2) = sin x1 + csc(3x2).

(a) Find the set of all equilibrium(s) for x.

(b) Find the set in which the equilibrium(s) is locally linear.

Now, F : R2 → R is not necessarily well-behaved.

(c)∗∗ Construct a function F such that x has a equilibrium that is not locally linear.
Hint: Consider the condition in which a non-linear system is locally linear.

Solution:

(a) Here, we note that the equilibrium is when F(x) = 0, i.e., sin x1 + csc(3x2) = 0. Here, we note
that the image of sin x1 is [−1, 1] and the image of sec(3x2) is (−∞,−1] ⊔ [1, ∞), this implies
that sin x1 + sec(3x2) is zero only if sin x1 = ±1 and sec(3x2) = ∓1, correspondingly.
First, we consider the set in which x1 is +1, that is:{

(4k + 1)π
2

: k ∈ Z

}
.

Correspondingly, we consider the set in which x2 is −1, that is:{
(4k + 3)π

6
: k ∈ Z

}
.

Then, we consider the set in which x1 is −1, that is:{
(4k + 3)π

2
: k ∈ Z

}
.

Likewise, we consider the set in which x2 is +1, that is:{
(4k + 1)π

6
: k ∈ Z

}
.

Therefore, set theoretically, we have the set of all equilibriums as:{
(4k + 1)π

2
: k ∈ Z

}
×
{
(4k + 3)π

6
: k ∈ Z

}
∪
{
(4k + 3)π

2
: k ∈ Z

}
×
{
(4k + 1)π

6
: k ∈ Z

}
.

(b) Note that sin x1 is (twice) differentiable over the entire domain R and csc(3x2) is (twice) differ-
entiable on all neighborhoods when csc(3x2) is ∓1, hence the partial derivatives of F(x) with
respect to x1 or x2 are (twice) differentiable on the neighborhood on all equilibriums, hence the
set in which the equilibrium(s) is locally linearly is the same from part (a), namely:{

(4k + 1)π
2

: k ∈ Z

}
×
{
(4k + 3)π

6
: k ∈ Z

}
∪
{
(4k + 3)π

2
: k ∈ Z

}
×
{
(4k + 1)π

6
: k ∈ Z

}
.

(c) Clearly, we must enforce that F(x) is not twice differentiable with some partial derivatives
near the equilibrium point(s). One trivial example could be using the absolute value, such as
F(x) = |x1|+ |x2|, where (0, 0) is a equilibrium but it is not differentiable.
For capable readers, we invite them to look for more functions, such as the Weierstrass Function,
a continuous function that is nowhere differentiable:

f (x) =
∞

∑
k=0

1
2k cos(3kx).



P LOT Final Practices: Solutions Differential Equations

9. Let a system of (x, y) be functions of variable t, and they have the following relationship:

x′ = (1 + x) sin y and y′ = 1 − x − cos y.

(a) Identify the corresponding linear system.

(b) Evaluate the stability for the equilibrium at (0, 0) by showing it is locally linear.

Solution:

(a) Here, since we can write: (
x
y

)′

=

(
0 0
−1 0

)(
x
y

)
+

(
(1 + x) sin y

1 − cos y

)
,

this implies that the linear system is:(
x
y

)′

=

(
0 0
−1 0

)(
x
y

)
.

(b) (0, 0) is locally linear. We find the Jacobian Matrix, that is:

J =

(
sin y (1 + x) cos y
−1 sin y

)
.

As we evaluate J at (0, 0) and take its determinant, we have:

det
(
J
∣∣
(0,0)

)
= det

(
0 1
−1 0

)
= 1 ̸= 0.

Hence, the (0, 0) is locally linear.

Note that we have found the linear system in part (a), whose eigenvalues are λ1 = λ2 = 0.
Since x′ = 0, it indicates that x is a constant, whereas for y′ = −x indicates that it will be a
unstable almost everywhere for all neighborhoods of (0, 0).

In particular, readers could illustrate the “slope field” for the linear system in (a), and they
should notice that except for x = 0 being entirely stable, all other trajectory would shift verti-
cally at a constant rate. However, the line x = 0 will always be insignificant enough (having
Lebesgue measure 0), hence we claim that it is unstable almost everywhere. For interested read-
ers, please explore Lebesgue measure as a way to determine how large a subset is in Euclidean
space.
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10.∗∗ Let a locally linearly system be defined as:

dx
dt

=

(
λ −µ

µ λ

)
x + f(x),

where f : R2 → R2 is a vector-valued function. Find the necessary condition(s) in which the
equilibrium(s) have a stable center in linear system. Then, state the stability and type (if possible).
Hint: Consider the solution for the linear case or matrix exponential.

Solution:
Without loss of generality, we assume that the system of x has equilibrium(s), else the statement is
vacuously true. Now, we start to evaluate the additional conditions with such assumption:

(i) Note that the system needs to be locally linearly, i.e., we must have
f(x) being twice differentiable with respect to partial derivatives .

(ii) Moreover, we need to worry about the linear system to have a stable center, that is:

x′ =

(
λ −µ

µ λ

)
x.

Note that the eigenvalues would be the solutions to (λ − r)2 + µ2 = 0, that is r = λ ± iµ, which
is a pair of complex conjugates. Here, in to be stable, we want λ ≤ 0, and for center, this forces
λ = 0 .

Note that even the linear system is a stable center, the stability of the non-linear system is
indeterminate , and the type is center or spiral point .


