PALOT

Midterm 1 Practices: Solutions
Differential Equations

Summer 2024

. Find the general solution for y = y(t):

Y43y =t+e?,

then, describe the behavior of the solution as t — oo.

Solution:

Here, one could note that this differential equation is not separable but in the form of integrating
factor problem, then we find the integrating factor as:

t
u(t) = exp </ 3ds> = exp(3t).
0
By multiplying both sides with exp(3t), we obtain the equation:
et 4 3y = e 4 e e,

Clearly, we observe that the left hand side is the derivative after product rule for ye* and the right
hand side can be simplified as:

%[yzfﬂ = te! +ef.

Therefore, we have turned this into an integration problem, so we do the respective integrations,

giving us that:
yedt = /te3tdt—0—/ e'dt
tedt
_ /3 ldt+e' +C

3
te3t e,
= 3 —?“—E +C

Eventually, we divide both sides by % to obtain that:

L N 3t
y(t)—3 9+e + Ce
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2. Given an initial value problem:

dy 3 t
E_Ey—3t+28/
¥(0) = yo.

(a) Find the integrating factor p(t).

(b) Solve for the particular solution for the initial value problem.

(c) Discuss the behavior of the solution as t — oo for different cases of .

(a)

(b)

(©)

Solution:

As instructed, we look for the integrating factor as:

u(t) = exp (/Ot —zds) = |exp (—it) .

With the integrating factor, we multiply both sides by j(t) to obtain that:

Y32 _ %y673t/2 34032 4 pte3t/2,

Clearly, we observe that the left hand side is the derivative after product rule for ye~3/2

and

the right hand side can be simplified as:
d 1 3t/2] _ A, -31/2 —t/2
T [ye } = 3te +2e7 .

Therefore, we have turned this into an integration problem, so we do the respective integrations,

giving us that:
ye 3t/2 = /3te‘3t/2dt+ / 2124t

= —2te 242 [ 2t —ar 2 g C

e 3t/2 _ %efSt/Z 4t C
Then, we divide both sides by e3*/2 to get the general solution:
y(t) = —2t — % —4e' + /2,
Given the initial condition, we have that:
Yyo=0— 4 44C,

3
which implies C = 16/3 + v, leading to the particular solution that:

y(t) =|—2t — g —4e + (136 +y0) 32|

We observe that:
lim y(t) = lim [—Zt Sy (136 +yo> e?’t/z} :

t—c0 t—o0 3

3t/2

Note that the important terms are ' and €'/, we need to care the critical value —16/3:

* when yy > —16/3,

y(t) — co when t — oo

9

* when yg < —16/3,

y(t) = —oo when t — oo ‘
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3. Suppose f(x) is non-zero, let an initial value problem be:

l-y dy _ f(x)
x dx  1+y
y(0) = 0.

(a) Show that the differential equation is not linear.
For the next two questions, suppose f(x) = tanx.

(b) State, without justification, the open interval(s) in which f(x) is continuous.

(c)* Show that there exists some § > 0 such that there exists a unique solution y(x) for x € (=4, 9).
Now, suppose that f(x) is some function, not necessarily continuous.

(d)** Suppose that the condition in (c) does not hold, give three examples in which f(x) could be.

Solution:

(a) Proof. We can write the equation as:

Foyy) =y - — B _y
Gy )=y iy -1
Note that: )
F(x, 1), )=y — IRVACON 1,
(v (y+1),(y+1)) =y ke
so the function is non-linear. O
(b) Here, we should consider that: .
f(x) =tanx = smx,
oS X

so the discontinuities are at when cos x = 0, that is:
2k+1
€ {<+)7T 1k e Z} .
2
Hence, we have the intervals in which f(x) being continuous as:

{((2k21)7tl (ZkJ;l)n) :keZ} ‘

(c) Proof. Here, we want to write our equation in the standard form and obtain that:

r . xtanx
A TRV e
of(t,y)  xtanx-2y

o (-1

Clear, we note the discontinuities of y at y = £1, and x demonstrated as above, thus we can
form a rectangle Q = (—7t/2,71/2) x (—1,1) in which the initial condition (0,0) € Q and f(¢,v)
with d, f (¢, y) are continuous on the interval. By the existence and uniqueness theorem for non-linear
case, we know that there exists some ¢ such that there is a unique solution for —6 < x <4. O

(d) If the condition in (c) does not hold, by contraposition, this implies that continuity must fail,

ie.,

xf(x) must be discontinuous at x = 0 | Hence, some examples could be:

flx) = %, or logx, or cscx, or xyg;(x) etc.
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4. An autonomous differential equation is given as follows:

%:4y3—12y2+9y—2 where t > 0 and y > 0.

Draw a phase portrait and sketch a few solutions with different initial conditions.

Solution:
Recall from Pre-Calculus (or Algebra) the following Rational root test:
Theorem 4.1: Rational Root Test. Let the polynomial:

apx" +a, X"V +ag=0
have integer coefficients a; € Z and ag, a, # 0, then any rational root r = p/q such that p,q € Z and
ged(p, q) = 1 satisfies that p|ag and g|a,,. 4

From the theorem, we can note that if the equation has a rational root, it must be one of:

1 1
=41,£2,+£-,+-.
r 4 4 2/ 4

By plugging in, one should notice that y = 2 is a root (one might also notice 1/2 is a root as well,
but we will get the step slowly), so we can apply the long division (dividing y — 2) to obtain that:
4y — 122 + 9y —2
y—2

Clear, we can notice that the right hand side is a perfect square (else, you could use the quadratic

=4y — 4y +1.

formula) that:
42 —4y+1=(2y — 1)~

Thus, we now know that the roots are 2 and 1/2 (multiplicity 2). Hence, the phase portrait is:

<—1{2 — 2

Semi-Stable Uns;able

Correspondingly, we can sketch a few solutions (not necessarily in scale):

2,_ _______________________________________________________ -
1/2,. _______________________________________________________ -

Note that for the Theorem 4.1, it can also be generalized into the following manner (in ring theory):
Theorem 4.2: Rational Root Theorem. Let R be UFD, and polynomial:

f(x) = anx" +a, 1x" 14+ +ag € R[],
and let r = p/gq € K(R) be a root of f with p,q € R and gecd(p,q) = 1, then p|ag and q|ay,. 3
The proofs of Theorem 4.1 and/or Theorem 4.2 are left as exercises to diligent readers. Moreover,

capable readers should attempt to prove that a polynomial of degree 3 with integer coefficients must have at

least one rational root.
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5.* Determine if the following differential equation is exact. If not, find the integrating factor to make

it exact. Then, solve for its general solution:

y(x)=e +y(x) -1

Solution:
First, we write the equation in the general form:

d—y+(1—eZX—y):o.

dx
Now, we take the partial derivatives to obtain that:
0
o 1 _ 2x _ — _1
gyt —¢ —vl=—1
d
—[1] =0.
5 =0

Notice that the mixed partials are not the same, the equation is .

Here, we choose the integrating factor as:
d

x L1 —e® —y] - 21
y(x)zexp('/o 2—e 1}/] as[]ds>

=exp </0x —ds> = exp(—x).

Therefore, our equation becomes:

<

(e*x)% + (e —e*—ye ¥)=0.
After multiplying the integrating factor, it would be exact. We leave the repetitive check as an exercise to
the readers.

Now, we can integrate to find the solution with a /() as function:

ply) = [(7 e —ye )dx = —e T "+ ye T +h(y).
By taking the partial derivative with respect to y, we have:
dye(x,y) =e* +H(y),
which leads to the conclusion that #'(y) = 0 so h(y) = C.

Then, we can conclude that the solution is now:

pxy)=—e*—e"+ye *+C=0,

y(r) =[Ce 1 4]

which is equivalently:
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6. Let a differential equation be defined as:

dy _ _
=t yand y(0) =

Use Euler’s Method with step size & = 1 to approximate y(5).

Solution:
With y(0) = 0, we have y'(0) = 0 — 0 = 0. We do the following steps:

* We approximate y(1) ~ y(0) +1-y'(0) = 0, then we have y'(1) 1 -0 =1.
e We approximate y(2) = y(1) +1-y'(1) ~ 1, then we have y'(2) 2 -1 =1
e We approximate y(3) ~ y(2) + 1-v/(2) ~ 2, then we have y/(3) ®3—-2=1
e We approximate y(4) ~ y(3) + 1-¢/(3) ~ 3, then we have y/(4) ® 4 -3 =1
e We approximate y(5) = y(4) +1-y/(4) = 4
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7. Solve the following second order differential equations for y = y(x):

(@) v +y —132y = 0.
(b) y' 4y = —4y.
(c) y' =2y +3y=0.
Solution:

(a) We find the characteristic polynomial as % + r — 132 = 0, which can be trivially factorized into:
(r—=11)(r+12) =0,

so with roots r; = 11 and r, = —12, we have the general solution as:

y(x) = | Crett™ + Cre 12|,

(b) We turn the equation to the standard form:
y'—4y +4=0.
We find the characteristic polynomial as > — 4r 4+ 4 = 0, which can be immediately factorized
into:
(r—2)2=0,

so with roots 71 = rp = 2 (repeated roots), we have the general solution as:

1) =[P T e

(c) We find the characteristic polynomial as r> — 2r + 3 = 0, which the quadratic formula gives:

2 _
:2:i:\/22 4X3:1:i:i\@

so with roots r; = 1+1v/2 and r, = 1 — iv/2, we would have the solution:
y(x) = Cle(1+iﬁ)x + Cze(l—i\/i)x'

To obtain real solution, we apply Euler’s identity:
y1(x) = e*(cos(V2x) — isin(v2x)) and y»(x) = e*(cos(—v2x) —isin(—Vv2x)).

By the principle of superposition, we can linearly combine the solutions to be different solutions,
so we have:

Fix) = 501 +12) = €% cos(v2x),

_ 1 .
y2(x) = E(yz —1) =¢€" sm(\[Zx).
One can verify that 177 and i/, are linearly independent by taking Wronskian,i.e.:

o e* cos(v/2x) e* sin(v/2x)
Wy, y2] = det . .
e* cos( \fx V2e* s1n(\@x) e sm(ﬁx) +/2e cos(\@x)
= V/2¢%* cos?(V2x) + V2¢* sin®(V2x) = v/2e** # 0.
Now, they are linearly independent, so we have the general solution as:

y(x) = | Cre* cos(v/2x) + Coe* sin(v/2x) |
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8.** The following system of partial differential equations portraits the propagation of waves on a
segment of the 1-dimensional string of length L, the displacement of string at x € [0, L] at time
t € [0, c0) is described as the function u = u(x, f):

Pu 0%

Differential Equation: Erw :20, where x € (0,L) and ¢ € [0, 00);
Initial Conditions: u(x,0) = sin <7zx) ,

aa—btl(x,O) = sin (5759() ,  where x € [0,L];
Boundary Conditions:  u(0,t) = u(L,t) =0, where t € [0, c0);

where ¢ is a constant and g(x) has “good” behavior. Apply the method of separation, i.e., u(x,t) =
v(x) - w(t), and attempt to obtain a general solution that is non-trivial.
Hint: Use the fact that {sin(n7mtx/L),cos(nmx/L)},cz+ forms an orthonormal basis.

Solution:
With the method of separation, we insert the separations back to the system of equation to obtain:

o(x)w" () = 0" (x)w(t).
Now, we apply the separation and set the common ratio to be A:
o (x) B l . w' () B
o(x) 2 w(t)
Reformatting the boundary condition gives use the following initial value problem:
v"(x) — Av(x) =0,
v(0) =ov(L) = 0.

As a second order linear ordinary differential equation, we discuss all following cases:

e If A =0, then v(x) = a + Bx and by the initial condition, A = B = 0, which gives the trivial
solution, i.e., v(x) = 0;
e If A = 2 > 0, then we have v(x) = Ae #* + Be!* and again giving that A = B = 0, or the
trivial solution;
e Eventually, if A = —p? < 0, then we have the solution as:
v(x) = Asin(pux) + Bcos(ux),

and the initial conditions gives us that:

v(0) =B =0,
v(L) = Asin(uL) + Bcos(uL) =0,
where A is arbitrary, B = 0, and uL = m7t positive integer m.

Overall, the only non-trivial solution would be:

om(x) = Asin(pumx), where py, = an
Eventually, by inserting back A = —puj,, we have A = —m?n*/L?, giving the solution to wy,(t),

another second order linear ordinary differential equation, as:

Wy (t) = Ccos(pumet) + Dsin(pmct), with C,D € R.

Continues on the next page...
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Continued from last page.
By the principle of superposition, we can have our solution in the form:

[e9)

u(x, t) = Y [am cos(pmet) + by sin(pmet)] sin(pmx),

m=1
where our coefficients a,, and b,, have to be chosen to satisfy the initial conditions for x € [0, L]:
o~ . . [ 2mx
u(x,0) = Y aysin(pux) = sin <L) ,

m=1
ou = , . [ 5mx
g(x,O) = mZ::l CUmby sin(pmx) = sin (L) .
Since we are hinted that {sin(nmx/L),cos(nmtx/L)},cz+ forms an orthonormal basis, we now know
that except for the following:
ap =1and cusbs =1,

all the other coefficients are zero, so we have:

u(x,t) =|cos 27t sin 2mx —|—Lsin St sin Smx
T L L 57t¢ L L /|
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9. Given a differential equation for y = y(t) being:

t3y” + ty/ —y= 0.

(a) Verify that y1(t) = t is a solution to the differential equation.

(b)* Find the full set of solutions using reduction of order.

(c) Show that the set of solutions from part (b) is linearly independent.

(a)

(b)

(0)

Solution:

Proof. We note that the left hand side is:
Byl +ty] —y1 =2 -0+t-1—t=t—t=0.
Hence y1(t) = t is a solution to the differential equation. O

By reduction of order, we assume that the second solution is y,(t) = tu(t), then we plug y»(t)
into the equation to get:
2630/ (1) + 1" (8) + tu(t) + 20/ (1) = " (8) + (283 + 2)u'(t) = 0.
Here, we let w(t) = u/(t) to get a first order differential equation:
P’ (t) = (=2t — 1w (t).

Clearly, this is separable, and we get that:

W) 2041 2 1

w(t)y 2t
which by integration, we have obtained that:

log (w(1)) = ~2logt + 1 +C.
By taking exponentials on both sides, we have:
w(t) = exp <—210gt + % + c> — G/t tlZ
Recall that we want u(t) instead of w(t), so we have:
u(t) = /w(t)dt = é/el/t . tlzdt — _GMt4D.

By multiplying t, we obtain that:
y, = —Cte!/t + Dt,

where Dt is repetitive in y1, so we get:

y(t) =| Cyt 4 Cote'/t|.

Proof. We calculate Wronskian as:

1/t t te!/! 1/t
W[t, te ] = det 1 1/t A/t = —e¢ # 0,
e/t — S
hence the set of solutions is linearly independent. O
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10.** Given the following second order initial value problem:
2
% +cos(1—x)y = x> —2x +1,

y(1) =1,

dy .\
(=0

Prove that the solution y(x) is symmetric about x = 1, i.e., satisfying that y(x) = y(2 — x).
Hint: Consider the interval in which the solution is unique.

Solution:
Note that I deliberately messed up with all the messy functions. Not only haven’t I found a solution
to the system, Wolfram cannot have an elementary solution as well. Hence, we need to think,

alternatively, on some theorems.

Proof. Here, we suppose that y(x) is a solution, and we want to show that y(2 — x) is also a solution.

First we note that we can think of taking the derivatives of y(2 — x), by the chain rule:
d

Sy -] =y (2-x),
dz 1
Sl —0) =y -x).
Now, if we plug in y(2 — x) into the system of equations, we have:

* First, for the differential equation, we have:
j—;[y(x —2)] +cos(1 —x)y(x —2) =y"(2 — x) + cos(x — 1)y(2 — x)
=y'(2—x)+cos(1—(2—x))y(2—x)
=" (x) + cos(1 — x)y(x)
=x>—2x+1=(x—1)2=(1-x)?
—(2-x)—-1)>=@2-x2-22-x)+1.
¢ For the initial conditions, we trivially have that:
y(1)=y(2-1)andy'(1) =y'(2-1).
Hence, we have shown that y(2 — x) is a solution if y(x) is a solution.
Again, we observe the original initial value problem that:

cos(1 —x) and x?> — 2x + 1 are continuous on R.

Therefore, by the existence and uniqueness theorem for second order linear case, there could be only one
solution, which forces that:

y(x) =y(2—x),

so the solution is symmetric about x = 1, as desired. O




