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Summer 2024

1. Find the general solution for y = y(t):

y′ + 3y = t + e−2t,

then, describe the behavior of the solution as t→ ∞.

Solution:
Here, one could note that this differential equation is not separable but in the form of integrating
factor problem, then we find the integrating factor as:

µ(t) = exp
(∫ t

0
3ds
)
= exp(3t).

By multiplying both sides with exp(3t), we obtain the equation:

y′e3t + 3ye3t = te3t + e−2te3t.

Clearly, we observe that the left hand side is the derivative after product rule for ye3t and the right
hand side can be simplified as:

d
dt
[ye3t] = te3t + et.

Therefore, we have turned this into an integration problem, so we do the respective integrations,
giving us that:

ye3t =
∫

te3tdt +
∫

etdt

=
te3t

3
−
∫ 1

3
e3tdt + et + C

=
te3t

3
− e3t

9
+ et + C.

Eventually, we divide both sides by e3t to obtain that:

y(t) =
t
3
− 1

9
+ e−2t + Ce−3t .
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2. Given an initial value problem: 
dy
dt
− 3

2
y = 3t + 2et,

y(0) = y0.

(a) Find the integrating factor µ(t).

(b) Solve for the particular solution for the initial value problem.

(c) Discuss the behavior of the solution as t→ ∞ for different cases of y0.

Solution:

(a) As instructed, we look for the integrating factor as:

µ(t) = exp
(∫ t

0
−3

2
ds
)
= exp

(
−3

2
t
)

.

(b) With the integrating factor, we multiply both sides by µ(t) to obtain that:

y′e−3t/2 − 3
2

ye−3t/2 = 3te−3t/2 + 2ete−3t/2.

Clearly, we observe that the left hand side is the derivative after product rule for ye−3t/2 and
the right hand side can be simplified as:

d
dt

[
ye−3t/2

]
= 3te−3t/2 + 2e−t/2.

Therefore, we have turned this into an integration problem, so we do the respective integrations,
giving us that:

ye−3t/2 =
∫

3te−3t/2dt +
∫

2e−t/2dt

= −2te−3t/2 + 2
∫

e−3t/2dt− 4r−t/2 + C

= −2te−3t/2 − 4
3

e−3t/2 − 4r−t/2 + C.

Then, we divide both sides by e−3t/2 to get the general solution:

y(t) = −2t− 4
3
− 4et + Ce3t/2.

Given the initial condition, we have that:

y0 = 0− 4
3
− 4 + C,

which implies C = 16/3 + y0, leading to the particular solution that:

y(t) = −2t− 4
3
− 4et +

(
16
3

+ y0

)
e3t/2 .

(c) We observe that:

lim
t→∞

y(t) = lim
t→∞

[
−2t− 4

3
− 4et +

(
16
3

+ y0

)
e3t/2

]
.

Note that the important terms are et and e3t/2, we need to care the critical value −16/3:

• when y0 > −16/3, y(t)→ ∞ when t→ ∞ ,

• when y0 ≤ −16/3, y(t)→ −∞ when t→ ∞ .
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3. Suppose f (x) is non-zero, let an initial value problem be:
1− y

x
· dy

dx
=

f (x)
1 + y

,

y(0) = 0.

(a) Show that the differential equation is not linear.

For the next two questions, suppose f (x) = tan x.

(b) State, without justification, the open interval(s) in which f (x) is continuous.

(c)∗ Show that there exists some δ > 0 such that there exists a unique solution y(x) for x ∈ (−δ, δ).

Now, suppose that f (x) is some function, not necessarily continuous.

(d)∗∗ Suppose that the condition in (c) does not hold, give three examples in which f (x) could be.

Solution:

(a) Proof. We can write the equation as:

F(x, y, y′) := y′ − x f (x)
(y + 1)(y− 1)

= 0,

Note that:
F
(

x, (y + 1), (y + 1)′
)
= y′ − x f (x)

(y + 2)y
̸= 1,

so the function is non-linear.

(b) Here, we should consider that:

f (x) = tan x =
sin x
cos x

,

so the discontinuities are at when cos x = 0, that is:

x ∈
{
(2k + 1)π

2
: k ∈ Z

}
.

Hence, we have the intervals in which f (x) being continuous as:{(
(2k− 1)π

2
,
(2k + 1)π

2

)
: k ∈ Z

}
.

(c) Proof. Here, we want to write our equation in the standard form and obtain that:

y′ := f (t, y) =
x tan x

(y + 1)(y− 1)
,

∂ f (t, y)
∂y

= − x tan x · 2y
(y2 − 1)2 .

Clear, we note the discontinuities of y at y = ±1, and x demonstrated as above, thus we can
form a rectangle Q = (−π/2, π/2)× (−1, 1) in which the initial condition (0, 0) ∈ Q and f (t, y)
with ∂y f (t, y) are continuous on the interval. By the existence and uniqueness theorem for non-linear
case, we know that there exists some δ such that there is a unique solution for −δ < x < δ.

(d) If the condition in (c) does not hold, by contraposition, this implies that continuity must fail,
i.e., x f (x) must be discontinuous at x = 0 . Hence, some examples could be:

f (x) =
1
x2 , or log x, or csc x, or χ{0}(x) etc.
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4. An autonomous differential equation is given as follows:
dy
dt

= 4y3 − 12y2 + 9y− 2 where t ≥ 0 and y ≥ 0.

Draw a phase portrait and sketch a few solutions with different initial conditions.

Solution:
Recall from Pre-Calculus (or Algebra) the following Rational root test:
Theorem 4.1: Rational Root Test. Let the polynomial:

anxn + an−1xn−1 + · · ·+ a0 = 0

have integer coefficients ai ∈ Z and a0, an ̸= 0, then any rational root r = p/q such that p, q ∈ Z and
gcd(p, q) = 1 satisfies that p|a0 and q|an. ⌟
From the theorem, we can note that if the equation has a rational root, it must be one of:

r = ±1,±2,±1
2

,±1
4

.

By plugging in, one should notice that y = 2 is a root (one might also notice 1/2 is a root as well,
but we will get the step slowly), so we can apply the long division (dividing y− 2) to obtain that:

4y3 − 12y2 + 9y− 2
y− 2

= 4y2 − 4y + 1.

Clear, we can notice that the right hand side is a perfect square (else, you could use the quadratic
formula) that:

4y2 − 4y + 1 = (2y− 1)2.

Thus, we now know that the roots are 2 and 1/2 (multiplicity 2). Hence, the phase portrait is:

1/2 2←− ←− −→
Semi-Stable Unstable

Correspondingly, we can sketch a few solutions (not necessarily in scale):

t

y

1/2

2

Note that for the Theorem 4.1, it can also be generalized into the following manner (in ring theory):
Theorem 4.2: Rational Root Theorem. Let R be UFD, and polynomial:

f (x) = anxn + an−1xn−1 + · · ·+ a0 ∈ R[x],

and let r = p/q ∈ K(R) be a root of f with p, q ∈ R and gcd(p, q) = 1, then p|a0 and q|an. ⌟
The proofs of Theorem 4.1 and/or Theorem 4.2 are left as exercises to diligent readers. Moreover,
capable readers should attempt to prove that a polynomial of degree 3 with integer coefficients must have at
least one rational root.
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5.∗ Determine if the following differential equation is exact. If not, find the integrating factor to make
it exact. Then, solve for its general solution:

y′(x) = e2x + y(x)− 1.

Solution:
First, we write the equation in the general form:

dy
dx

+ (1− e2x − y) = 0.

Now, we take the partial derivatives to obtain that:
∂

∂y
[1− e2x − y] = −1,

∂

∂x
[1] = 0.

Notice that the mixed partials are not the same, the equation is not exact .
Here, we choose the integrating factor as:

µ(x) = exp

(∫ x

0

∂
∂y [1− e2s − y]− ∂

∂s [1]

1
ds

)

= exp
(∫ x

0
−ds

)
= exp(−x).

Therefore, our equation becomes:

(e−x)
dy
dx

+ (e−x − ex − ye−x) = 0.

After multiplying the integrating factor, it would be exact. We leave the repetitive check as an exercise to
the readers.
Now, we can integrate to find the solution with a h(y) as function:

φ(x, y) =
∫
(e−x − ex − ye−x)dx = −e−x − ex + ye−x + h(y).

By taking the partial derivative with respect to y, we have:

∂y φ(x, y) = e−x + h′(y),

which leads to the conclusion that h′(y) = 0 so h(y) = C.
Then, we can conclude that the solution is now:

φ(x, y) = −e−x − ex + ye−x + C = 0,

which is equivalently:

y(x) = C̃ex + 1 + e2x .
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6. Let a differential equation be defined as:
dy
dt

= t− y and y(0) = 0.

Use Euler’s Method with step size h = 1 to approximate y(5).

Solution:
With y(0) = 0, we have y′(0) = 0− 0 = 0. We do the following steps:

• We approximate y(1) ≈ y(0) + 1 · y′(0) = 0, then we have y′(1) ≈ 1− 0 = 1.

• We approximate y(2) ≈ y(1) + 1 · y′(1) ≈ 1, then we have y′(2) ≈ 2− 1 = 1.

• We approximate y(3) ≈ y(2) + 1 · y′(2) ≈ 2, then we have y′(3) ≈ 3− 2 = 1.

• We approximate y(4) ≈ y(3) + 1 · y′(3) ≈ 3, then we have y′(4) ≈ 4− 3 = 1.

• We approximate y(5) ≈ y(4) + 1 · y′(4) ≈ 4.

Then, we have approximated that:
y(5) ≈ 4 .
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7. Solve the following second order differential equations for y = y(x):

y′′ + y′ − 132y = 0.(a)

y′′ − 4y′ = −4y.(b)

y′′ − 2y′ + 3y = 0.(c)

Solution:

(a) We find the characteristic polynomial as r2 + r− 132 = 0, which can be trivially factorized into:

(r− 11)(r + 12) = 0,

so with roots r1 = 11 and r2 = −12, we have the general solution as:

y(x) = C1e11x + C2e−12x .

(b) We turn the equation to the standard form:

y′′ − 4y′ + 4 = 0.

We find the characteristic polynomial as r2 − 4r + 4 = 0, which can be immediately factorized
into:

(r− 2)2 = 0,

so with roots r1 = r2 = 2 (repeated roots), we have the general solution as:

y(x) = C1e2x + C2xe2x .

(c) We find the characteristic polynomial as r2 − 2r + 3 = 0, which the quadratic formula gives:

r =
2±
√

22 − 4× 3
2

= 1± i
√

2

so with roots r1 = 1 + i
√

2 and r2 = 1− i
√

2, we would have the solution:

y(x) = C1e(1+i
√

2)x + C2e(1−i
√

2)x.

To obtain real solution, we apply Euler’s identity:

y1(x) = ex( cos(
√

2x)− i sin(
√

2x)
)

and y2(x) = ex( cos(−
√

2x)− i sin(−
√

2x)
)
.

By the principle of superposition, we can linearly combine the solutions to be different solutions,
so we have:

ỹ1(x) =
1
2
(y1 + y2) = ex cos(

√
2x),

ỹ2(x) =
1
2
(y2 − y1) = ex sin(

√
2x).

One can verify that ỹ1 and ỹ2 are linearly independent by taking Wronskian,i.e.:

W[ỹ1, ỹ2] = det

(
ex cos(

√
2x) ex sin(

√
2x)

ex cos(
√

2x)−
√

2ex sin(
√

2x) ex sin(
√

2x) +
√

2ex cos(
√

2x)

)
=
√

2e2x cos2(
√

2x) +
√

2e2x sin2(
√

2x) =
√

2e2x ̸= 0.

Now, they are linearly independent, so we have the general solution as:

y(x) = C1ex cos(
√

2x) + C2ex sin(
√

2x) .
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8.∗∗ The following system of partial differential equations portraits the propagation of waves on a
segment of the 1-dimensional string of length L, the displacement of string at x ∈ [0, L] at time
t ∈ [0, ∞) is described as the function u = u(x, t):

Differential Equation:
∂2u
∂t2 − c2 ∂2u

∂x2 = 0, where x ∈ (0, L) and t ∈ [0, ∞);

Initial Conditions: u(x, 0) = sin
(

2πx
L

)
,

∂u
∂t

(x, 0) = sin
(

5πx
L

)
, where x ∈ [0, L];

Boundary Conditions: u(0, t) = u(L, t) = 0, where t ∈ [0, ∞);

where c is a constant and g(x) has “good” behavior. Apply the method of separation, i.e., u(x, t) =
v(x) · w(t), and attempt to obtain a general solution that is non-trivial.
Hint: Use the fact that {sin(nπx/L), cos(nπx/L)}n∈Z+ forms an orthonormal basis.

Solution:
With the method of separation, we insert the separations back to the system of equation to obtain:

v(x)w′′(t) = c2v′′(x)w(t).

Now, we apply the separation and set the common ratio to be λ:
v′′(x)
v(x)

=
1
c2 ·

w′′(t)
w(t)

= λ.

Reformatting the boundary condition gives use the following initial value problem:v′′(x)− λv(x) = 0,

v(0) = v(L) = 0.

As a second order linear ordinary differential equation, we discuss all following cases:

• If λ = 0, then v(x) = a + Bx and by the initial condition, A = B = 0, which gives the trivial
solution, i.e., v(x) = 0;

• If λ = µ2 > 0, then we have v(x) = Ae−µx + Beµx and again giving that A = B = 0, or the
trivial solution;

• Eventually, if λ = −µ2 < 0, then we have the solution as:

v(x) = A sin(µx) + B cos(µx),

and the initial conditions gives us that:v(0) = B = 0,

v(L) = A sin(µL) + B cos(µL) = 0,

where A is arbitrary, B = 0, and µL = mπ positive integer m.

Overall, the only non-trivial solution would be:

vm(x) = A sin(µmx), where µm =
mπ

L
.

Eventually, by inserting back λ = −µ2
m, we have λ = −m2π2/L2, giving the solution to wm(t),

another second order linear ordinary differential equation, as:

wm(t) = C cos(µmct) + D sin(µmct), with C, D ∈ R.

Continues on the next page...
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Continued from last page.
By the principle of superposition, we can have our solution in the form:

u(x, t) =
∞

∑
m=1

[am cos(µmct) + bm sin(µmct)] sin(µmx),

where our coefficients am and bm have to be chosen to satisfy the initial conditions for x ∈ [0, L]:

u(x, 0) =
∞

∑
m=1

am sin(µmx) = sin
(

2πx
L

)
,

∂u
∂t

(x, 0) =
∞

∑
m=1

cµmbm sin(µmx) = sin
(

5πx
L

)
.

Since we are hinted that {sin(nπx/L), cos(nπx/L)}n∈Z+ forms an orthonormal basis, we now know
that except for the following:

a2 = 1 and cµ5b5 = 1,

all the other coefficients are zero, so we have:

u(x, t) = cos
(

2πct
L

)
sin
(

2πx
L

)
+

L
5πc

sin
(

5πct
L

)
sin
(

5πx
L

)
.
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9. Given a differential equation for y = y(t) being:

t3y′′ + ty′ − y = 0.

(a) Verify that y1(t) = t is a solution to the differential equation.

(b)∗ Find the full set of solutions using reduction of order.

(c) Show that the set of solutions from part (b) is linearly independent.

Solution:

(a) Proof. We note that the left hand side is:

t3y′′1 + ty′1 − y1 = t3 · 0 + t · 1− t = t− t = 0.

Hence y1(t) = t is a solution to the differential equation.

(b) By reduction of order, we assume that the second solution is y2(t) = tu(t), then we plug y2(t)
into the equation to get:

2t3u′(t) + t4u′′(t) + tu(t) + t2u′(t) = t4u′′(t) + (2t3 + t2)u′(t) = 0.

Here, we let ω(t) = u′(t) to get a first order differential equation:

t2ω′(t) = (−2t− 1)ω(t).

Clearly, this is separable, and we get that:
ω′(t)
ω(t)

= −2t + 1
t2 = −2

t
− 1

t2 ,

which by integration, we have obtained that:

log
(
ω(t)

)
= −2 log t +

1
t
+ C.

By taking exponentials on both sides, we have:

ω(t) = exp
(
−2 log t +

1
t
+ C

)
= C̃e1/t · 1

t2 .

Recall that we want u(t) instead of ω(t), so we have:

u(t) =
∫

ω(t)dt = C̃
∫

e1/t · 1
t2 dt = −C̃e1/t + D.

By multiplying t, we obtain that:
y2 = −C̃te1/t + Dt,

where Dt is repetitive in y1, so we get:

y(t) = C1t + C2te1/t .

(c) Proof. We calculate Wronskian as:

W[t, te1/t] = det

(
t te1/t

1 e1/t − e1/t

t

)
= −e1/t ̸= 0,

hence the set of solutions is linearly independent.
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10.∗∗ Given the following second order initial value problem:

d2y
dx2 + cos(1− x)y = x2 − 2x + 1,

y(1) = 1,

dy
dx

(1) = 0.

Prove that the solution y(x) is symmetric about x = 1, i.e., satisfying that y(x) = y(2− x).
Hint: Consider the interval in which the solution is unique.

Solution:
Note that I deliberately messed up with all the messy functions. Not only haven’t I found a solution
to the system, Wolfram cannot have an elementary solution as well. Hence, we need to think,
alternatively, on some theorems.

Proof. Here, we suppose that y(x) is a solution, and we want to show that y(2− x) is also a solution.
First we note that we can think of taking the derivatives of y(2− x), by the chain rule:

d
dx

[y(2− x)] = −y′(2− x),

d2

dx2 [y(2− x)] = y′′(2− x).

Now, if we plug in y(2− x) into the system of equations, we have:

• First, for the differential equation, we have:

d2

dx2 [y(x− 2)] + cos(1− x)y(x− 2) = y′′(2− x) + cos(x− 1)y(2− x)

= y′′(2− x) + cos
(
1− (2− x)

)
y(2− x)

= y′′(x) + cos(1− x)y(x)

= x2 − 2x + 1 = (x− 1)2 = (1− x)2

=
(
(2− x)− 1

)2
= (2− x)2 − 2(2− x) + 1.

• For the initial conditions, we trivially have that:

y(1) = y(2− 1) and y′(1) = y′(2− 1).

Hence, we have shown that y(2− x) is a solution if y(x) is a solution.
Again, we observe the original initial value problem that:

cos(1− x) and x2 − 2x + 1 are continuous on R.

Therefore, by the existence and uniqueness theorem for second order linear case, there could be only one
solution, which forces that:

y(x) = y(2− x),

so the solution is symmetric about x = 1, as desired.


