PALOT

Midterm 2 Practices: Solutions
Differential Equations

Summer 2024

1. Solve the general solution for y = y(t) to the following second order non-homogeneous ODEs.

(a) V' +2y +y=e.
(b) y" +y =tant.
Solution:
(a) First, we look for homogeneous solution, i.e., y"" 4+ 2y' 4+ y = 0, whose characteristic equation is:
P42r+1=(r+12=0,
with root(s) being —1 with multiplicity of 2, so the general solution to homogeneous case is:
yg(t) = Cre™" + Cate .
Notice that the non-homogeneous part is ¢!, but we have ¢! and te™' as general solutions
already, so we have our guess of particular solution as:
yp(t) = At?e™t,
By taking the derivatives, we have:
yp(t) = A(2te™" — t?e7 ) and y(t) = AQ2e™" —dte™ + t2e').
We simply plug in the particular solution, so we have:
AQ2e ™t —dte™! + 12" 4 2A(2te ™t — et + AtPet =7t
24t =¢!
1
A= 5
Hence, our solution to the non-homogeneous case is:
y(t) =|Cre ' + Cate ™t + %t2e_t .
(b) Here, we still look for homogeneous solutions, i.e., ¥ 4+ y = 0, whose characteristic equation is:
P +1=0,
with roots +i. Since we are dealing with real valued functions, we have the general solution as:
yg = Cysint + Cycost.
Note that tant does not work with undetermined coefficients, we must use the variation of
parameters, the Wronskian of our solution is:
Wisint, cost] = det (::;i —C(s)lsrft> = —sin’t —cos’t = —1.
Continues on the next page...
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Now, we may use the formula, namely getting the particular solution as:

—cost-tant sint - tant
yp:sint/idt—i-cost/ildt

1
)
t
:sint/sintdt—cost/ s dt
cost
) 1 —cos?t
:smt(—cost—kC)—cost/idt
cost

= —sintcost + Csinf — cost (/sectdt—/costdt)

= —sintcost — cost (log|sect + tant| — sint + C)
= —sintcost+sintcost — CeosT — costlog |sect + tan |
= —costlog|sect + tant|.

Hence, our solution to the non-homogeneous case is:

y(t) :‘Cl sint + Cp cost — costlog|sect + tan t| ‘
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2. Solve for the general solution to the following higher order ODE.

d*y 4>y d%y dy

(@) 4—dx —24d 3 +45d 29—dx +6y = 0.
d4

(b)** Ix Z +y=0.

Hint: Consider the 8-th root of unity, i.e., (g, and verify which roots satisfies the polynomial.

Solution:
(a) Note that we obtain the characteristic equation as:
4r* —241° 4+ 4512 —29r + 6 = 0.

To obtain our roots, we use the Rational Root Theorem, so if the characteristic equation has

any rational root, it must have been one (or more) of the following:
1 .3

+1,+2,£3, :I:E, ii'

From plugging in the values, we notice that 2 and 3 are roots of the characteristic equation, by
division, we have:

4r* — 2473 +45r* —29r 4+ 6

r—2)(r—3)
Now, we know that the roots are 2, 3, and 1/2 with multiplicity 2, thus the solution to the

=4 —dr+1=(2r—1)>%

differential equation is:

y(x) = | Cre®* + Coe® + Cze*/? + Cyxe™/?

Aguain, we invite readers to verify the Rational Root Theorem, in which more details could be found
on Question 4 from Midterm 1 Practices: Solutions.

(b) For this general solution, we trivially obtain that the characteristic polynomial is:
P +1=0.
Recall that the root of unity address for the case when r* = 1, so we consider the 8th root of

unity, in which (Zg)® = 1. Now, recall Euler’s Identity and deMoivre’s formula, we note that

only the odd powers of the 8th root of unity satisfies that r* = —1, namely, are:
™ _ V2 V2
G =cos () visin (3) = 5 +15
3 3 V2 V2
§8—cos<4>+ isin <4>——+12,

Qg—cos(54 >+ isin (5;-[) :—\zﬁ—i 22,

{4 = cos n +isin T Q - iﬁ
8= vy 7)== >
Also, we note that {g and {3 are complex conjugates, whereas 3 and 3 are complex conjugates,

so we can linearly combine them to obtain the set of linearly independent solutions, i.e.:

e (V2/2)x lQ cos (?x) + Cy sin <\fx>1
+ ef(ﬁ/Z)x ng cos <\fx> + Cy sin (?x)]

y(x) =
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3. Let a third order differential equation be as follows:

(D] =y (1) +3y" (5) + 3y (1) + ().
Let £[y(t)] = 0 be trivial initially.

(a) Find the set of all linearly independent solutions.
Then, assume that £[y(t)] is non-trivial.

(b) Find the particular solution to £[y(t)] = sint.

(c) Find the particular solution to £[y(f)] =e™".

(d)* Suppose that £[y;(t)] = f(t) and £[y»(t)] = g(t) where f(t) and g(t) are “good” functions.
Find an expression to y3(t) such that £[y3(t)] = f(t) + g(t).

Solution:
(a) Note that the characteristic polynomial can be factorized as perfect cubes:
P43 4+3r+1=(r+1)>%=0,

its roots are r = —1 with multiplicity 3, so the general solution is:

y(t) =|Cre™" + Cate™" + Cyt?e ™"

Here, the readers are invited to check, by Wronskian, that set of solutions are linearly independent.
(b) First, we want to make our guess of particular solution as:
yp(t) = Asint + Bcost,
and by taking the derivatives, we have:
yy(t) = Acost — Bsint,  y,(t) = —Asint — Bcost, and yy (t) = —Acost + Bsint.
Then, we want to plug in the results into the equation, so:
Clyp(t)] = (—Acost+ Bsint) +3(—Asint — Bcost) +3(Acost — Bsint) + Asint + Bcost
=(B—3A—-3B+ A)sint+ (—A—3B+3A+ B)cost
= (—2A —2B)sint + (2A — 2B) cost.

Therefore, we can obtain the system that:

—2A-2B=1,
2A-2B=0,

which reduces to A = —1/4 and B = —1/4, so the solution is:

1 1
y(t) = Cie '+ Cote ™t + Cgtze_t ~1 sint — i cost|.

(c) Here, note that et te~t and t2e~! are the solutions to homogeneous case, our guess, then, is:
yp(t) = Afe,
and by taking the derivatives, we have:
yp(t) = 3At%e~! — Atde ™, y,(t) = 6Ate™ — 6At%e™! + Atde™!, and
yy (t) = 6Ae™" —18Ate™" + 9A2 et — Ade!

Continues on the next page...
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When we plug the derivatives back to the solutions, we note that:
Clyp(t)] = (6Ae™" — 18Ate " +9Ate ™ — APe™")
+3(6Ate™" —6At?e™! + APe!) + 3(3AFe ™! — APe!) + (Afe ™)
=6Ae !,

which reduces to A = 1/6, so the solution is:

1
y(t) =| Cret + Cate ™" 4 Cat?e ! + 8t3e*t .

(d) Proof. Here, one should note that the derivative operator is linear, so we have that:

3 2
Ll (6) + y2(0)] = 5 [ (6) 4 92(0] + 37 [y () +ya(6)] 3.5 [32 (1) + ya()] + 32 (0) + ()]
=1 (£) + 3y (£) + 3y1 (£) + ya () + 5" () + 3y (£) +3ya(t) +y2(t)

= f(t) +g(t),
as desired. 0
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4. Show the following Laplace transformation by definition.

(a) L{sin(at)} = pﬂaﬁ'
) L{(f=8)()} = L{f(O)} + L{s(B)}.
Solution:

(a) Proof. Here, we do the Laplace transformation via definition:

L{sin(at)} = / Lsin(at)dt

Lo st
= —ge sin(at) —|— / f cos(at)dt
1 (o]
=1 [—e cos(at) - E/ e sm(at)dt]
s| s =0 S Jo
:2 E{ sin(at) }.
Thus, we have the Laplace transformatlon as:
. a/s* a
L{sin(at)} = s Sl
as desired. O

(b) Proof. Recall that the convolution notation in this course is that:

= [t - g0y

so we can apply the Laplace transformation function. For simplicity, we assume that f and g
behaves well enough, i.e., they satisfies the conditions for Fubinii’s Theorem, thus:

L{(f*g)(t)} = / ) (t)dt
—/ *Sf/ F(T)g(t — T)drdt
- / f(r / Sto(t — )dtdT
:/0 f(r)e*”/0 e g(¢ — v)dtdT
= [ f@etar. [T e g - v - 1)

=L{f(}+L{g(t)},
as desired. O
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5. Given the following the results after Laplace transformation F(s) = L{f(t)}, find each f(t) prior to
the Laplace transformation.

252 4+ 4
F(s) = ——.
@ (s) s3 +4s
2
b)* F(s) = —— —1.
(b) ()=
Solution:

(a) For this equation, one should notice that we can factor our denominator here and use partial

factions, as:
2s24+4 1 s

F(s)= 1> 24 _°
(s) s(s>+4) s+sz+4

By finding the inverse, we have:

s = (e {55 ) - [reosten]

(b) Here, notice that we can combine the —1 into the function, as:

¢ 249 -9

249 249 249

Note that the Laplace transformation is linear, so does its inverse, so we have:

£ 25_1{52199} N 35_1{#19} =[-3sin(31)|

F(s)
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6. Find the solution of y = y(t) to the following IVP using Laplace transformation:

y// _ 2]/, + Zy — e_t,
y(0)=0, y(0)=1

Solution:
Here, we want to use the Laplace transformation for derivatives, for simplicity, we denote Y = £ {y}:

L{y"} —2£{y'y +2L{y} = L{e'}

s2Y —sy(0) — ' (0) — 2sY +2y(0) +2Y = ﬁ
5 1 s+2
(s°—2s+1)Y = +1+ P
y — 542
(s+1)(s2—2s+42)
11 1 —s+8
T 5s+1 5(s—1)2+1
111 s—1 7 1
T 5s+1 5(5—1)2+1+5(s—1)2+1

By taking the inverse of Laplace, we have:

1 1 7
y(t) = ge*t - get cost+ get sint|.
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7.%* Dirac delta function é(t) is heuristically defined as:
+oo, ift=0 o
5(t) = ' and / S(Hdt = 1.
0, ift#0 o0

In real analysis, 6(t) is often called an “approximation to identity”, meaning that it “preserves” the

original equation after convolution. By the definition of convolution for f and g, here, as:

t
(F)() = [ f(t=m)g(ar,
prove that (f = J)(t) = f(t) for t > 0.
Hint: Use the convolution theorem and the Laplace transformation of step functions.

Solution:
If you have consulted with a few other texts, you might observe that the convolution formula here

is different from the convolution formula in analysis textbooks, i.e.:

(fxg)(t) = /0 f(1)g(t —T)dT.
In fact, the above definition allows better property, known as “approximation to identity” for the

entire domain. However, we may show the version that you see in the ODEs course with a weaker

conclusion.

Proof. Here, we apply the Laplace transformation on f * §, which is:
LLUf o))} = L{f (D)) - £{o(1)}
= L{f(O} e
= L{u(t)- f(B)}.
(Or you can consider the e~ term disappearing since it is just 1.) Hence, we have demonstrated

that:
0, when t < 0

(Fro)) = {f(t), when t >0

which implies that (f *6)(t) = f(t) for t > 0. O

If you are interested in the concept of Dirac delta function, you can look up the conditions to be
a “good kernel”, which proceeds further to a narrower class of kernels as approximations to the
identity. Moreover, we suggest consulting some constructions of the kernels, such as the shrinking

function or the series of Gaussian bell curve.
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8. Let a system of differential equations be defined as follows, find the general solutions to the equation.

30
x = X, x € R
0 2

Solution: The question should be trivial, we first find the eigenvalues for the equation, i.e.:
det (270 0 )2,
0 2-A
which is (3 —A)(2—A) =0, thatis A; = 3 and A, = 2. Then, we look for the eigenvectors.

— 1
e For Ay = 3, we have (303 203> ¢1 =0, whichis §; = xq <0>

3-2 0 0
e For A, = 2, we have =0, whichis & = x .
2 < 0 o 2) &2 Gr=x <1>

x =|Cie? ! + Cpe* 0 .
0 1

Hence, the solution is:
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9. Let a system of differential equations of x;(¢) be as follows:

{x’l =3x14+2x;, x(1)=0,
=2.

xé = x1 + 4xy, x2(1)

(a) Solve for the solution to the initial value problem.

(b) Identify and describe the stability at equilibrium(s).

(a)

(b)

Solution:

Here, we denote x = (x; xz)T, so our system becomes:

, (3 2 (o
x' = (1 4) X, x(1) = <2>

Here, the eigenvalues are solutions to:

det (P70 2 )=,
1 4-A

which simplifies to A2 — 70410 = 0, and further gives Ay = 2, A = 5. Then, we look for

eigenvectors of the matrix:

1 2 -2
e For Ay = 2, we have <1 2) ¢1 = 0, which gives that {1 = x» ( , >

2

-2
e For A, = 5, we have < . .

) ¢» = 0, which gives that §, = x; G)

Now, the general solution must be:

-2 1
x=C; e+ @) €5t,
1 1

and by plugging in the initial condition, we have:
—2C162 + C2€5 =0,
C1€2 + C2€5 =2

In which the solution is C; = % and Cp, = so the solution is:

4
3¢57
{x1 = 422 4 4,55,

Xy = 26272 4 46515,

Now, we consider the equilibrium at x = (0 O)T, in which we note that both eigenvalues are

positive, meaning that this is an | unstable node |.
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10.** (Putnam 2023.) Determine the smallest positive real number r such that there exists differentiable
functions f : R — R and ¢ : R — R satisfying:
. £(0) >0,
* 8(0)=0,
o |f'(x)] < |g(x)] for all x,
e |¢/(x)] < |f(x)| for all x, and
* f(r)=0.
You may give an answer without a rigorous proof, as the proof is out of scope of the course.

Hint: Assume that the function “moves” the fastest when the cap of the derivatives are “moving”
the fastest, then think of constructing a dynamical system relating f and g.

Solution:
Here, we first provide a “simplified” case, i.e., we are constructing a dynamical system in which we

pick equality for the inequality, that is:

f'(x)| = [8(x)], and
8" ()] = [f ()]

Without loss of generality, we may assume that f and g are non-negative before r, so the system

{f’=g
g=f

-1
0 ) y. Clearly, we observe the eigenvalues are +i as the

becomes:

or equivalently, y = <f ) that y = <(1)
8

-1
polynomial is A2 + 1 = 0. Moreover, the eigenvectors for A; = i is when

) ¢ = 0, in which

—1

we have { =y (i) , and that solution is:

i\ i L —sinx . [ cosx
y = e = (cosx +isinx) = +i|
1 1 COS X sin x,

and by conjugation, the solution should be:

(f) e (— sinx) LG <c<.)sx) '

g cos X sin x

Note that with the given initial condition that g(0) = 0, this enforces C; = 0, thus f(x) = Ccosx
and g(x) = Csinx, and we know that f(r) is zero first at r = .

The above version has some reasoning, but is not a rigorous proof at all, since this does not consider if r could

be smaller than 7t /2. For students with interests, we provide the complete proof from the Putnam competition
from Victor Lie, as follows.

Proof. Without loss of generality, we assume f(x) > 0 for all x € [0,r) as it is the first positive zero.
By the fundamental theorem of calculus, we have:

£l < sl < | [ sas] < [Tl < [ 1f)las

Continues on the next page...
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Now, as we denote F(x) = [ f(s)ds, we have:

f'(x)+ F(x) > 0 for x € [0, 7].

For the sake of contradiction, we suppose r < 77/2, then we have:

f'(x) cosx + F(x) cosx > 0 for x € [0,7].
Notice that the left hand side is the derivative of f(x)cosx + F(x)sinx, so an integration on [y, 7|
gives:

F(r)sinr > f(y) cosy + F(y) sin(y).
With some rearranging, we can have:
F(r)sinrsec®y > f(y)secy + F(y) sinysec’ y
Again, we integrate both sides with respect to y on [0, r|, which gives:
F(r)sin®r > F(r),

and this is impossible, so we have a contradiction.
Hence we must have r > 71/2, and since we have noted the solution f(x) = Ccosx and g(x) =

C sin x, we have proven that » = 71/2 is the smallest case. O




