PALOT

Exam 1 Review Problem Set 1: Solutions
Differential Equations

Summer 2025

1. Solve the following initial value problem (IVP) on y = y(x), and specify the domain for your solution:

{y’ = (xlogx)~",
y(e) = —6.

Solution:

Here, we notice that this problem is separable, hence we can write:
1

dy = xlog xdx’

1
/ 4y = / xlogxdx'

Now, we evaluate the integral by substitution, i.e., # = log x and du = dx/x, which give that:

y= /%du = log |u| + C = log | log x| + C.
Eventually, we plug in the initial condition, that is y(e) = —6, giving us that:
—6 = log |loge| + C,
C=—6.

y =|log|logx| — 6|

Here, we note that log(—) has a valid domain over positive numbers, and the double log(—) func-

Therefore, the solution is:

tions enforces that x must be greater than 1, as log(0) is undefined. Since our initial condition is e,

and e € (1,0), the domain of the solution is .
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2. Suppose f(x) is non-zero, let an initial value problem be:

l-y dy _ f(x)
x dx  1+y’
y(0) = 0.

(a) Show that the differential equation is not linear.
For the next two questions, suppose f(x) = tanx.

(b) State, without justification, the open interval(s) in which f(x) is continuous.

(c)* Show that there exists some J > 0 such that there exists a unique solution y(x) for x € (=46, 9).
Now, suppose that f(x) is some function, not necessarily continuous.

(d) Suppose that the condition in (c) does not hold, give three examples in which f(x) could be.

Solution:
. : xf(x) .
(@) Proof. We can write the equation as F(x,v,v') :=y — ——2=—~—— =0, and since:
f q v y) =Y~ oy =1
F(x, (y+1), +1/:/_L(x)751/
o+, 1) =y =y
so the function is non-linear. O
(b) Here, we should consider that: _
F(x) = tanx — smx’
cos x

so the discontinuities are at when cos x = 0, that is:

Hence, we have the intervals in which f(x) being continuous as:

{((Zk—l)n (2k+1)7r) :keZ} ‘

2 ’ 2

(c) Proof. Here, we want to write our equation in the standard form and obtain that:
/ x tan x af(t,y) Xtanx -2y
= (t, ) == 7 = - :
A UV T VT (717
Clear, we note the discontinuities of y at y = £1, and x demonstrated as above, thus we can
form a rectangle Q = (—7t/2,71/2) x (—1,1) in which the initial condition (0,0) € Q and f(¢,vy)
with d, f (¢, y) are continuous on the interval. By the existence and uniqueness theorem for non-linear

case, we know that there exists some ¢ such that there is a unique solution for -6 < x <4. O

(d) If the condition in (c) does not hold, by contraposition, this implies that continuity must fail,

ie.,| xf(x) must be discontinuous at x = 0 ‘ Hence, some examples could be:

flx) = %, or log x, or cscx, or xyg;(x) etc.
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3. Draw the phase line and determine the stability of each equilibrium for the following autonomous

differential equations:

(@)
(b)

y/ — y4 _ 3y3 _|_ 2y2

yl — y2025 _ 1

(a)

(b)

Solution:

First, we need to factor the right hand side polynomial as:
v =3Pt = (P -3y +2) = yAly - 1Dy - 2),
50, we can trivially note the roots as:
y = 0 with multiplicity 2,y =1, and y = 2.
Sophisticated readers shall notice that this polynomial has a positive leading coefficient, hence
it approaches 400 when y — oo, hence the arrows can be easily determined.
Otherwise, readers can plug in a value within each intervals, suchasy =3 fory > 2, y = 3/2

for 1 <y < 2, etc., which should work equivalently.
Hence, we should expect a graph as follows:

— 0 — 1 — 2 —

A
~
<

Semi-Stable Stable Unstable

The stability is given by the directions of the arrows.

Here, readers shall realize that the right hand side polynomial is monotonic ((y?%?°> — 1)’ > 0),
so the only real root is at ¥ = 1, and since the polynomial has positive leading coefficient and
odd order, it shall approach FFco as y — Foo, so the phase line is:

— 1 —

Unstable

The stability is given by the directions of the arrows.
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4. Let a differential equation be defined as follows:

dy _
dx
(a) What is the integrating factor (y(x)) for the equation? Solve for the general solution.

Xty —1.

(b) Is the equation exact? If not, make it exact, then find the general solution.

(c) Do solutions from part (a) and (b) agree?

Solutions:

(a) First, we write the equation in standard form, that is ' — y = ¢** — 1. Hence, with p(x) = —1,

the integrating factor is:

() = exp ([ pte)as) =exp ([ (1)) =[exp (=]

Then, we multiply the integrating factors on both ends to obtain:

Tx [ye ™| =" —e 7,

ye ¥ = / (" —eM)dx=e"+e"+C,

y=|Ce* +e¥ +1|

(b) Note that for exactness, we write the equation as:

d
(=e* —y+1)+ (1) =0,
N—— ~—— UXx
M(xy) N(xy)

meaning that their partial derivatives are, respectively:

dyM(x,y) = —1 and 9xN(x,y) =0,

and since they are different, the equation is .

Thus, we look for the integrating factor, i.e.:

u(t) = exp (/Ox ayM(x,i])(;j;N(x,]/)) — exp (/Ox —11— 0d5> _ exp(—1).

Now, we multiply e™* on both sides, giving us that:

(—e*—ye *+e )+ (e7) dy =0.
~—— dx
M(xy) N(xy)

Now, the equation should be exact. We leave the check to the readers as an exercise.
To get the solution, we first integrate M(x,y) with respect to x, that is:

p(xy) = [(—¢ —ye ™ +e)dx = " ye T — e +h(y).
Now, taking the derivative with respect to y gives:
(v y) =e " +H(y) =e,

which pushes h(y) to be constant, hence we have solution:

p(x,y)=|—e"+ye* —e*=C|
(c) The solutions by simple arithmetic deductions.
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5.* This brief digression to “differential forms” aims for the following goals:

ay _ f(x)

* Legitimize Fy o) <= g(y)dy = f(x)dx via the differential operator d.

* Get the foundation of exactness for certain differential equation relationship.

First, consider variables x1, X2, - - , x;, we may defined the wedge product (A) to connect any two
variables satisfying that:
X AXj = —xj A\ Xx; foralll <i,j <m.

(a) Show that x; Ax; =0for1 <i<n.
Now, given any smooth function f, we defined the differential operator (d) as:
n af
af = g a—xidxl.
(b) Suppose y(x) = e*, find dy.
(c) Now, suppose that g—z =8 can you express dy in terms of the differential form of x.

&)
Note: Since we have just one variable, we have dy/dx = dy/dx, leading to our first goal.

Furthermore, we can apply the differential operator over differential forms with wedge products
already. Suppose:
w = Z fillu.,ikdxil VANREIRIAN dxik,

i1, ik
we may have the differential of w as:

dw = . Z (dfiy,.. i) dxy A~ Adx,.

1,0 Ak

(d) Suppose x,y are the variables, and w = 2xy?dx + 2x%ydy, show that dw = 0.

This then relates to a concept called exactness in differential equations. Consider the equation:

dl P(‘x’y) _0

dx = G(x,y)
we can rewrite it as F(x,y)dx + G(x,y)dy = 0. Exactness enforces that:
oF _ 3G
dy  ox’
Similarly, exactness is considering finding a solution f(x,y) = ¢ such that F = % and G = %.
(e) Show that df = F(x,y)dx + G(x,y)dy and exactness is equivalently d(df) = 0.
Note: This implies that the differential equation in part (d) satisfies exactness.
Solution:
(a) Proof. Since we have:
xXi \Nx;j = —x;i \NXj,
we must have x; A x; = 0. O

(b) By the given differential operator:

dy = S—de = dx.

Continues on the next page...
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Continued from last page.

(c) Then, we have:

dy = %dx: mdx.

Hence, we justify the separation of the variables as g(y)dy = f(x)dx.
(d) Proof. As instructed, we have:

_ 92 9 (h. 2 9 (r.2 0 (r.2
dw = g(ny )dx A dx + @(ny Ydy A dx + g(?.x y)dx ANdy + @(Zx y)dy A dy

= 0+ 4xydy Adx + 4xydx ANdy + 0 = —4xydx A dy + 4xydx N dy = 0,
as desired. 0
(e) Proof. First, we have that:
_of o,
df = adx + @dy = Fdx + Gdy.

Then, in terms of the exactness relationship, we have:

oF dG oF G
oF oG
= @dyAdx+gdx/\dy =0
oF oF oG oG
= aclx/\alx+@dy/\dergdxmrly+@dym:ly =0
<~ d(df) =0.
Hence, we have shown that the exactness is exactly that the differential form satisfies that
d(df) =0. O

In fact, for any smooth function f, we have d(df) = 0, which is the equivalent of the conclusion
such that mixed partials are equal. We invite capable readers to investigate that d> :== dod =
0 for all smooth function f. Additionally, people with experiences in vector calculus could
investigate the following commutative diagram.

(R 1 orry) T o we) s d(w?)

I § 5 I

C®(R3,R) ~ 4 ¢ (R, R?) VL oo (R3, R)

The above are respectively 0-form, 1-form, 2-form, and 3-form (with 0, 1, 2, or, 3 A’s in the

differential form) and the below are smooth functions mapping in respective Euclidean spaces.
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6.* Determine if the following differential equation is exact. If not, find the integrating factor to make

it exact. Then, solve for its general solution:,

y(x)=e +y(x) -1

Solution:
First, we write the equation in the general form:

dx
Now, we take the partial derivatives to obtain that:
J 2x _
@U —er —yl=-1,
d
a[l] =0.

Notice that the mixed partials are not the same, the equation is .
Here, we choose the integrating factor as:

O] g2 _y] 9
V(x)—exp</0xay[1 ‘ 1}/] aSmds)

= exp </0x —ds> = exp(—x).

Therefore, our equation becomes:
(e*x)d—y +(eF—ef—ye¥)=0.

dx
After multiplying the integrating factor, it would be exact. We leave the repetitive check as an exercise to

the readers.
Now, we can integrate to find the solution with a /() as function:

p(x,y) = /(e_" —ef—ye N)dx = —eF —e* +ye * +h(y).
By taking the partial derivative with respect to y, we have:
dye(x,y) =e * +H(y),
which leads to the conclusion that #'(y) = 0 so h(y) = C.
Then, we can conclude that the solution is now:

pxy)=—e*—e"+ye *+C=0,

y() =[Ce 14 ]

which is equivalently:



https://jhu-ode-pilot.github.io/SU25

P ALOT Differential Equations

7. For the first-order autonomous ODE: P
ay
dt

where C € R is a parameter. Determine any and all bifurcation values for the parameter C and

=siny +C,

sketch a bifurcation diagram.

Solution:

It is not hard to observe that sin y will intersect the axis infinitely many times, while sin(R) = [—1,1],
one shall then realize that the bifurcation value would be +1, since when C > 1 or C < —1, there
will be no equilibriums at all.

Therefore, the bifurcation diagram can be illustrated as:

(1,37/2)

AN AW
LM
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8. Let a first order IVP on y := y(t) be defined as follows:
r_2
y - ty’
y() =1
(a) Find the solution to the above initial value problem.

(b) Recall the theorem on existence and uniqueness, as follows:

For an IVP in simple form:
dy _
o = A0y +b(b),
y(to) = vo.

For some I = (a,B8) > to, if a(t) and b(t) are continuous on the interval I. Then, there

exists a unique solution to the IVP on the interval I.

Show that the IVP in this problem does not satisfy the condition for the existence and unique-

ness theorem for R.

(c) Does the above example violates the existence and uniqueness theorem? Why?

Solution:

(a) This problem is clearly separable, we may compute:

dy _ ,dt
y t
[
y t
log|y| =2log|t|+ C
y = Ct%

Note that the initial condition enforces that y(1) = 1, so the solution is just:

v=[7]

(b) Note that a(t) = 2/t, which is not continuous over (—o0,0) U (0, 0), then the theorem does not
guarantee the existence and uniqueness of a solution over RR.

(c) This is not a violation since the converse of the theorem is not necessarily true. In propositional
logic, if A implies B (written as A = B), the converse (B implies A, written as B = A) is not

necessarily true. Hence, we can still have a solution that is unique over R.
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9. Solve the following second order differential equations for y = y(x):

(a) v’ +y —132y =0.
(b) y' -4y = —4y
(©) y' =2y +3y =0
Solution:
(a) We find the characteristic polynomial as 2 +r — 132 = 0, which can be trivially factorized into:
(r—11)(r+12) =0,
so with roots ¥; = 11 and r, = —12, we have the general solution as:
y(x) =| Crel™ + Cpe 12|,
(b) We turn the equation to the standard form:
v —4y/ +4=0.
We find the characteristic polynomial as > — 4r 4+ 4 = 0, which can be immediately factorized
into:
(r—2)2=0,
so with roots 71 = rp = 2 (repeated roots), we have the general solution as:
y(x) =[G + Cone |
(c) We find the characteristic polynomial as 7> — 2r + 3 = 0, which the quadratic formula gives:

2 _
rZZi\/ZZ 4X3:1ii\@

so with roots r{ =1+ iv/2 and rp=1-— i\@, we would have the solution:
y(X) — Cle(1+i\/§)x + Cze(l_iﬁ)x.
To obtain real solution, we apply Euler’s identity:
y1(x) = e*(cos(V2x) — isin(v2x)) and y»(x) = e*(cos(—v2x) —isin(—Vv2x)).

By the principle of superposition, we can linearly combine the solutions to be different solutions,
so we have:

Vi(x) = 5(y1+y2) = ¢*cos(V2x),

_ 1 )
y2(x) = E(yz — 1) = ¥ sin(v2x).
One can verify that ij; and 1, are linearly independent by taking Wronskian,i.e.:

o e* cos(v/2x) e* sin(v/2x)
Wiy, 2] = det (ex cos(v/2x) — v/2e¥ sin(v/2x) e sin(v/2x) + /2¢* cos(ﬁx))

= V/2¢%* cos?(V2x) + V2¢* sin®(V2x) = V22 # 0.
Now, they are linearly independent, so we have the general solution as:

y(x) = | Cre* cos(v/2x) + Coe* sin(v/2x) |

NI~
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10.* Given the following second order initial value problem:
2
% +cos(1—x)y = x> —2x +1,

y(1) =1,

dy .\
(=0

Prove that the solution y(x) is symmetric about x = 1, i.e., satisfying that y(x) = y(2 — x).
Hint: Consider the interval in which the solution is unique.

Solution:
Note that I deliberately messed up with all the messy functions. Not only haven’t I found a solution to
the system, Wolfram cannot have an elementary solution as well. Hence, we need to think, alternatively,

on some theorems.

Proof. Here, we suppose that y(x) is a solution, and we want to show that y(2 — x) is also a solution.

First we note that we can think of taking the derivatives of y(2 — x), by the chain rule:

-0 =y,

d2 /!
-0 =y"2-x).

Now, if we plug in y(2 — x) into the system of equations, we have:

e First, for the differential equation, we have:
d2
ﬁ[y(x —2)] +cos(1 —x)y(x —2) =" (2 — x) + cos(x — 1)y(2 — x)
=y"(2—x)4cos(1—-(2—x))y(2—x)
=" (x) + cos(1 — x)y(x)
=x>—2x+1=(x-1)?=(1-x)?

—(2-0-1)2=2-x*-22-x+1.

¢ For the initial conditions, we trivially have that:
y(1) =y2-1andy'(1) =y'(2-1).
Hence, we have shown that y(2 — x) is a solution if y(x) is a solution.
Again, we observe the original initial value problem that:
cos(1 — x) and x2 — 2x + 1 are continuous on R.

Therefore, by the existence and uniqueness theorem for second order linear case, there could be only one solution,

which forces that:

so the solution is symmetric about x = 1, as desired. O
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