
P ILOT
Exam 1 Review Problem Set 2: Solutions

Differential Equations

Summer 2025

1. Solve for the general solution to the following ODEs with y = y(t):

2y′ + y = 3t.(a)

y′ + log(t)y = t−t.(b)

Solution:

(a) Here, we first convert the equation to standard form, i.e.:

y′ +
1
2

y =
3
2

t.

Hence, with p(t) = 1/2, the integration factor must be:

µ(t) = exp
(∫ t

0
p(s)ds

)
= exp

(∫ t

0

1
2

ds
)
= exp

(
1
2

t
)

.

Now, we multiply the integration factor on both sides, giving that:

y′et/2 +
1
2

yet/2 =
3
2

tet/2,

d
dt

[
et/2y

]
=

3
2

tet/2,

et/2y =
3
2

∫
tet/2dt =

3
2

[
2tet/2 −

∫
2et/2

]
=

3
2

[
2tet/2 − 4et/2 + C

]
= 3tet/2 − 6et/2 + C̃,

y = C̃e−t/2 + 3t− 6 .

(b) Again, we find the integration factor as:

µ(t) = exp
(∫ t

e
log sds

)
.

To find the antiderivative of log(−), we have:∫
log sds =

∫
1 · log sds = s log s−

∫
s · 1

s
ds = s log s−

∫
ds = s log s− s + C.

Therefore, the integrating factor is:

µ(t) = exp(t log t− t) =
exp(t log t)

et =
tt

et .

Hence, we multiply the integration factor on both sides, giving that:

tt

et +
tt

et log ty = e−t,

d
dt

[
tt

et y
]
= e−t,

tt

et y =
∫

e−tdt = −e−t + C,

y = −t−t + Ct−tet .
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2. Solve the following initial value problem (IVP) on y = y(x), and specify the domain for your solution:y′ = y(y + 1),

y(0) = 1.

Solution: Now, we trivially separate the problem as:
dy

y(y + 1)
= dx.

Then, we use the partial fraction to obtain that:(
1
y
− 1

y + 1

)
dy = dx.

Now, we can integrate both side to obtain that:∫ (1
y
− 1

y + 1

)
dy =

∫
dx,

log |y| − log |y + 1| = x + C,

log
∣∣∣∣ y
y + 1

∣∣∣∣ = x + C,

y
y + 1

= C̃ex.

Now, we consider the left hand side as:
y

y + 1
=

y + 1
y + 1

− 1
y + 1

= 1− 1
y + 1

,

which allows us to rewrite the equation as:
1

y + 1
= 1− C̃ex,

y =
1

1− C̃ex
− 1 =

C̃ex

1− C̃ex
.

By plugging in the initial condition, we trivially have:

1 =
C̃

1− C̃
=⇒ C̃ =

1
2

.

Hence, the solution is:

y =
ex

2− ex .

For the domain of our solution, we note that ex is continuous, but 2− ex could cause a zero denom-
inator at x = log 2. Note that log 2 > 0, so the domain of the solution is (−∞, log 2) .
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3. Given an initial value problem: 
dy
dt
− 3

2
y = 3t + 2et,

y(0) = y0.

(a) Find the integrating factor µ(t).

(b) Solve for the particular solution for the initial value problem.

(c) Discuss the behavior of the solution as t→ ∞ for different cases of y0.

Solution:

(a) As instructed, we look for the integrating factor as:

µ(t) = exp
(∫ t

0
−3

2
ds
)
= exp

(
−3

2
t
)

.

(b) With the integrating factor, we multiply both sides by µ(t) to obtain that:

y′e−3t/2 − 3
2

ye−3t/2 = 3te−3t/2 + 2ete−3t/2.

Clearly, we observe that the left hand side is the derivative after product rule for ye−3t/2 and
the right hand side can be simplified as:

d
dt

[
ye−3t/2

]
= 3te−3t/2 + 2e−t/2.

Therefore, we have turned this into an integration problem, so we do the respective integrations,
giving us that:

ye−3t/2 =
∫

3te−3t/2dt +
∫

2e−t/2dt

= −2te−3t/2 + 2
∫

e−3t/2dt− 4r−t/2 + C

= −2te−3t/2 − 4
3

e−3t/2 − 4r−t/2 + C.

Then, we divide both sides by e−3t/2 to get the general solution:

y(t) = −2t− 4
3
− 4et + Ce3t/2.

Given the initial condition, we have that:

y0 = 0− 4
3
− 4 + C,

which implies C = 16/3 + y0, leading to the particular solution that:

y(t) = −2t− 4
3
− 4et +

(
16
3

+ y0

)
e3t/2 .

(c) We observe that:

lim
t→∞

y(t) = lim
t→∞

[
−2t− 4

3
− 4et +

(
16
3

+ y0

)
e3t/2

]
.

Note that the important terms are et and e3t/2, we need to care the critical value −16/3:

• when y0 > −16/3, y(t)→ ∞ when t→ ∞ ,

• when y0 ≤ −16/3, y(t)→ −∞ when t→ ∞ .
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4. An autonomous differential equation is given as follows:
dy
dt

= 4y3 − 12y2 + 9y− 2 where t ≥ 0 and y ≥ 0.

Draw a phase portrait and sketch a few solutions with different initial conditions.
Solution:
Recall from Pre-Calculus (or Algebra) the following Rational root test:
Theorem: Rational Root Test. Let the polynomial:

anxn + an−1xn−1 + · · ·+ a0 = 0

have integer coefficients ai ∈ Z and a0, an ̸= 0, then any rational root r = p/q such that p, q ∈ Z and
gcd(p, q) = 1 satisfies that p|a0 and q|an. ⌟
From the theorem, we can note that if the equation has a rational root, it must be one of:

r = ±1,±2,±1
2

,±1
4

.

By plugging in, one should notice that y = 2 is a root (one might also notice 1/2 is a root as well,
but we will get the step slowly), so we can apply the long division (dividing y− 2) to obtain that:

4y3 − 12y2 + 9y− 2
y− 2

= 4y2 − 4y + 1.

Clear, we can notice that the right hand side is a perfect square (else, you could use the quadratic
formula) that:

4y2 − 4y + 1 = (2y− 1)2.

Thus, we now know that the roots are 2 and 1/2 (multiplicity 2). Hence, the phase portrait is:

1/2 2←− ←− −→
Semi-Stable Unstable

Correspondingly, we can sketch a few solutions (not necessarily in scale):

t

y

1/2

2

Note that the Theorem can also be generalized into the following manner (in ring theory):
Theorem: Rational Root Theorem. Let R be UFD, and polynomial:

f (x) = anxn + an−1xn−1 + · · ·+ a0 ∈ R[x],

and let r = p/q ∈ K(R) be a root of f with p, q ∈ R and gcd(p, q) = 1, then p|a0 and q|an. ⌟
The proofs of the Theorems left as exercises to diligent readers.
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5. Let a differential equation be defined as:
dy
dt

= t− y and y(0) = 0.

Use Euler’s Method with step size h = 1 to approximate y(5).
Solution:
With y(0) = 0, we have y′(0) = 0− 0 = 0. We do the following steps:

• We approximate y(1) ≈ y(0) + 1 · y′(0) = 0, then we have y′(1) ≈ 1− 0 = 1.

• We approximate y(2) ≈ y(1) + 1 · y′(1) ≈ 1, then we have y′(2) ≈ 2− 1 = 1.

• We approximate y(3) ≈ y(2) + 1 · y′(2) ≈ 2, then we have y′(3) ≈ 3− 2 = 1.

• We approximate y(4) ≈ y(3) + 1 · y′(3) ≈ 3, then we have y′(4) ≈ 4− 3 = 1.

• We approximate y(5) ≈ y(4) + 1 · y′(4) ≈ 4.

Then, we have approximated that:
y(5) ≈ 4 .
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6. For the first-order autonomous ODE:
dx
dt

= x2 − 2x + c,

with parameter c ∈ R, do the following:

(a) Sketch all of the qualitatively different graphs of f (x) = x2 − 2x + c, as c is varied.

(b) Determine any and all bifurcation values for the parameter c.

(c) Sketch a bifurcation diagram for this ODE.

Solutions:

(a) Given the right hand side, we want to find its critical point, i.e., x2 − 2x + c = 0, that is:

x =
2±
√

4− 4c
2

= 1±
√

1− c.

Graphically, we may draw the diagram as:

dx/dt

t

c = 1

c > 1

c < 1
1

(b) Then, we find the bifurcation value, that is the critical points equivalent to each other, i.e.:

1 +
√

1− c = 1−
√

1− c

c = 1 .

Diligent readers might also notice that this is the value c such that ∆ = 0.

(c) When c > 1, dx/dt > 0. When c = 1, the two roots are both 1. When c < 1, the dx/dt > 0 when
larger than the larger root or smaller than the smaller roots, hence the phase diagrams are:

c > 1:
−→

c = 1:

−→ −→
1

c < 1:

−→ −→←−
r1r2

Thus, the bifurcation diagram is:

c

t

(1, 1)
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7. Carbon-14, a radioactive isotope of carbon, is an effective tool in dating the age of organic com-
pounds, as it decays with a relatively long period. Let Q(t) denote the amount of carbon-14 at time
t, we suppose that the decay of Q(t) satisfies the following differential equation:

dQ
dt

= −λQ where λ is the rate of decay constant.

(a) Let the half-life of carbon-14 be τ, find the rate of decay, λ.

(b) Suppose that a piece of remain is discovered to have 10% of the original amount of carbon-14,
find the age of the remain in terms of τ.

Solutions:

(a) Note that the differential equation is separable, hence:
dQ
Q

= −λdt,∫ dQ
Q

= −
∫

λdt,

log |Q| = −λt + C,

Q = C̃e−λt.

Here, we assume Q = Q0 at t = t0, then we have Q = Q0/2 when t = t0 + τ, so:
1
2
= e−λτ ,

which deduces to:

λ = − 1
τ

log
(

1
2

)
=

log 2
τ

.

(b) If there are only 10% of remain, we suppose that we have Q = Q0 at t = 0, and have Q = Q0/10
at t = t0, hence giving that:

Q0

10
= Q0 exp (−λt0) = Q0 exp

(
− log(2)t0

τ

)
.

Thus, we obtain that:
1

10
= exp

(
− log(2)t0

τ

)
,

and by solving for t0, we obtain:

t0 = − τ

log 2
log
(

1
10

)
=

log 10
log 2

τ .
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8.∗ Let an initial value problem be defined as follows:
(
12x4 + 5x2 + 6

) dy
dx
−
(
x2 sin(x) + x3)y = 0,

y(0) = 1.

Show that the solution to the above initial value problem is symmetric about x = 0.
Solution:
If you were attempting to solve this problem by integrating factor or exactness, you are on the wrong
track. The functions are deliberately chosen so that these operations will be hardly possible.
However, this does not necessarily mean that is it not possible to prove without solving the solution
out, one shall utilize the existence and uniqueness theorem to proceed.
Proof. Now, we first observe that when we rewrite the problem, we have:

y′ =
x2 sin(x) + x3

12x4 + 5x2 + 6
y,

where we clearly notice that the numerator and denominator are composed of continuous function
while the denominator is positive, so we know that it is continuous over R, so the initial value
problem exhibits a unique solution.
Now, suppose y(x) is a solution of the above IVP, we want to show that ỹ(x) := y(−x) is also a
solution to the above IVP.
Clearly, we have:

ỹ(0) = y(−0) = y(0) = 1,

so the initial condition is satisfied, so we are left to check the differential equation. By chain rule, we
have:

dỹ
dx

(x) =
dy
dx

(−x) · d
dx

[−x] = −ỹ′(x).

With the first equation and y being a solution, we can make all x into −x to obtain that:(
12(−x)4 + 5(−x)2 + 6

)dy(−x)
dx

−
(
(−x)2 sin(−x) + (−x)3)ỹ = 0,

and if we organize the left hand side, we have:(
12x4 + 5x2 + 6

)
ỹ′ −

(
x2 sin(x) + x3)ỹ = 0,

so ỹ is clearly another solution to the IVP, so by uniqueness, we must have ỹ(x) = y(x), or namely
y(−x) = y(x), so the solution must be symmetric about x = 0. □
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9.∗ The following system of partial differential equations portraits the propagation of waves on a seg-
ment of the 1-dimensional string of length L, the displacement of string at x ∈ [0, L] at time t ∈ [0, ∞)

is described as the function u = u(x, t):

Differential Equation:
∂2u
∂t2 − c2 ∂2u

∂x2 = 0, where x ∈ (0, L) and t ∈ [0, ∞);

Initial Conditions: u(x, 0) = sin
(

2πx
L

)
,

∂u
∂t

(x, 0) = sin
(

5πx
L

)
, where x ∈ [0, L];

Boundary Conditions: u(0, t) = u(L, t) = 0, where t ∈ [0, ∞);

where c is a constant and g(x) has “good” behavior. Apply the method of separation, i.e., u(x, t) =
v(x) · w(t), and attempt to obtain a general solution that is non-trivial.
Hint: Use the fact that {sin(nπx/L), cos(nπx/L)}n∈Z+ forms an orthonormal basis.
Solution:
With the method of separation, we insert the separations back to the system of equation to obtain:

v(x)w′′(t) = c2v′′(x)w(t).

Now, we apply the separation and set the common ratio to be λ:
v′′(x)
v(x)

=
1
c2 ·

w′′(t)
w(t)

= λ.

Reformatting the boundary condition gives use the following initial value problem:v′′(x)− λv(x) = 0,

v(0) = v(L) = 0.

As a second order linear ordinary differential equation, we discuss all following cases:

• If λ = 0, then v(x) = a + Bx and by the initial condition, A = B = 0, which gives the trivial
solution, i.e., v(x) = 0;

• If λ = µ2 > 0, then we have v(x) = Ae−µx + Beµx and again giving that A = B = 0, or the
trivial solution;

• Eventually, if λ = −µ2 < 0, then we have the solution as:

v(x) = A sin(µx) + B cos(µx),

and the initial conditions gives us that:v(0) = B = 0,

v(L) = A sin(µL) + B cos(µL) = 0,

where A is arbitrary, B = 0, and µL = mπ positive integer m.

Overall, the only non-trivial solution would be:

vm(x) = A sin(µmx), where µm =
mπ

L
.

Eventually, by inserting back λ = −µ2
m, we have λ = −m2π2/L2, giving the solution to wm(t),

another second order linear ordinary differential equation, as:

wm(t) = C cos(µmct) + D sin(µmct), with C, D ∈ R.

Continues on the next page...
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Continued from last page.
By the principle of superposition, we can have our solution in the form:

u(x, t) =
∞

∑
m=1

[am cos(µmct) + bm sin(µmct)] sin(µmx),

where our coefficients am and bm have to be chosen to satisfy the initial conditions for x ∈ [0, L]:

u(x, 0) =
∞

∑
m=1

am sin(µmx) = sin
(

2πx
L

)
,

∂u
∂t

(x, 0) =
∞

∑
m=1

cµmbm sin(µmx) = sin
(

5πx
L

)
.

Since we are hinted that {sin(nπx/L), cos(nπx/L)}n∈Z+ forms an orthonormal basis, we now know
that except for the following:

a2 = 1 and cµ5b5 = 1,

all the other coefficients are zero, so we have:

u(x, t) = cos
(

2πct
L

)
sin
(

2πx
L

)
+

L
5πc

sin
(

5πct
L

)
sin
(

5πx
L

)
.
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10. Given a differential equation for y = y(t) being:

t3y′′ + ty′ − y = 0.

(a) Verify that y1(t) = t is a solution to the differential equation.

(b) Find the full set of solutions using reduction of order.

(c) Show that the set of solutions from part (b) is linearly independent.

Solution:

(a) Proof. We note that the left hand side is:

t3y′′1 + ty′1 − y1 = t3 · 0 + t · 1− t = t− t = 0.

Hence y1(t) = t is a solution to the differential equation.

(b) By reduction of order, we assume that the second solution is y2(t) = tu(t), then we plug y2(t)
into the equation to get:

2t3u′(t) + t4u′′(t) + tu(t) + t2u′(t) = t4u′′(t) + (2t3 + t2)u′(t) = 0.

Here, we let ω(t) = u′(t) to get a first order differential equation:

t2ω′(t) = (−2t− 1)ω(t).

Clearly, this is separable, and we get that:
ω′(t)
ω(t)

= −2t + 1
t2 = −2

t
− 1

t2 ,

which by integration, we have obtained that:

log
(
ω(t)

)
= −2 log t +

1
t
+ C.

By taking exponentials on both sides, we have:

ω(t) = exp
(
−2 log t +

1
t
+ C

)
= C̃e1/t · 1

t2 .

Recall that we want u(t) instead of ω(t), so we have:

u(t) =
∫

ω(t)dt = C̃
∫

e1/t · 1
t2 dt = −C̃e1/t + D.

By multiplying t, we obtain that:
y2 = −C̃te1/t + Dt,

where Dt is repetitive in y1, so we get:

y(t) = C1t + C2te1/t .

(c) Proof. We calculate Wronskian as:

W[t, te1/t] = det

(
t te1/t

1 e1/t − e1/t

t

)
= −e1/t ̸= 0,

hence the set of solutions is linearly independent.
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