
P ILOT
Exam 3 Review Problem Set 6: Solutions

Differential Equations

Summer 2025

1. Find the general solution for y = y(t):

y′ + 3y = t + e−2t,

then, describe the behavior of the solution as t → ∞.
Solution:
Here, one could note that this differential equation is not separable but in the form of integrating
factor problem, then we find the integrating factor as:

µ(t) = exp
(∫ t

0
3ds
)
= exp(3t).

By multiplying both sides with exp(3t), we obtain the equation:

y′e3t + 3ye3t = te3t + e−2te3t.

Clearly, we observe that the left hand side is the derivative after product rule for ye3t and the right
hand side can be simplified as:

d
dt
[ye3t] = te3t + et.

Therefore, we have turned this into an integration problem, so we do the respective integrations,
giving us that:

ye3t =
∫

te3tdt +
∫

etdt

=
te3t

3
−
∫ 1

3
e3tdt + et + C

=
te3t

3
− e3t

9
+ et + C.

Eventually, we divide both sides by e3t to obtain that:

y(t) =
t
3
− 1

9
+ e−2t + Ce−3t .
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2. Draw the phase line and determine the stability of each equilibrium for the following autonomous
differential equation:

y′ = y2 + 2y + C, where C ∈ R is a constant.

Determine the bifurcation values for the parameter C and sketch a bifurcation diagram.
Solution:
It is not hard to observe that sin y will intersect the axis infinitely many times, while sin(R) = [−1, 1],
one shall then realize that the bifurcation value would be ±1, since when C > 1 or C < −1, there
will be no equilibriums at all.
Therefore, the bifurcation diagram can be illustrated as:

C

y

(1, 3π/2)
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3. Determine if the following differential equation is exact. If not, find the integrating factor to make it
exact. Then, solve for its general solution:

y′(x) = e2x + y(x)− 1.

Solution:
First, we write the equation in the general form:

dy
dx

+ (1 − e2x − y) = 0.

Now, we take the partial derivatives to obtain that:
∂

∂y
[1 − e2x − y] = −1,

∂

∂x
[1] = 0.

Notice that the mixed partials are not the same, the equation is not exact .
Here, we choose the integrating factor as:

µ(x) = exp

(∫ x

0

∂
∂y [1 − e2s − y]− ∂

∂s [1]

1
ds

)

= exp
(∫ x

0
−ds

)
= exp(−x).

Therefore, our equation becomes:

(e−x)
dy
dx

+ (e−x − ex − ye−x) = 0.

After multiplying the integrating factor, it would be exact. We leave the repetitive check as an exercise to
the readers.
Now, we can integrate to find the solution with a h(y) as function:

φ(x, y) =
∫
(e−x − ex − ye−x)dx = −e−x − ex + ye−x + h(y).

By taking the partial derivative with respect to y, we have:

∂y φ(x, y) = e−x + h′(y),

which leads to the conclusion that h′(y) = 0 so h(y) = C.
Then, we can conclude that the solution is now:

φ(x, y) = −e−x − ex + ye−x + C = 0,

which is equivalently:

y(x) = C̃ex + 1 + e2x .
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4. Let a differential equation on y := y(x) be defined as follows:

xy2 + bx2y + (x + y)x2y′ = 0.

Suppose this differential equation is exact. Find the appropriate value of b and then solve for the
solution of the differential equation.
Solutions:
First, we write the differential equation as:

(xy2 + bx2y︸ ︷︷ ︸
M(x,y)

)dx + (x + y)x2︸ ︷︷ ︸
N(x,y)

dy = 0.

Hence, we have the partial derivatives as:

∂y M(x, y) = 2xy + bx2 and ∂x N(x, y) = 3x2 + 2xy.

Hence, we have b = 3 to make the differential equation exact.
Then, we have the differential equation as:

(xy2 + 3x2y︸ ︷︷ ︸
M(x,y)

)dx + (x + y)x2︸ ︷︷ ︸
N(x,y)

dy = 0.

Then, we integrate M with respect as x being:

ϕ(x, y) =
∫

M(x, y)dx =
1
2

x2y2 + x3y + h(y).

When we take the derivative with respect to y being:

∂yϕ(x, y) = x2y + x3 + h′(y) = x2(x + y) + h′(y),

hence we have h′(y) = 0, so h(y) = C, and we have the solution as:

ϕ(x, y) =
1
2

x2y2 + x3y = C .
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5. Find the general solution to the following differential equations:

y′′′ − 4y′ = e−2t.(a)

y′′ + 36y = et sin(6t).(b)

Solution:

(a) First, we find the homogeneous case, that is y′′′ − 4y′ = 0, whose characteristic equation is
r3 − 4r = 0, so the roots are r = 0, 2,−2, hence the homogeneous solution is:

y(t) = C1 + C2e2t + C3e−2t.

Given that the non-homogeneous part already exists in the equation, then our guess should be
yp(t) = Ate−2t, which the derivatives as:

y′p(t) = Ae−2t − 2Ate−2t,

y′′p(t) = −4Ae−2t + 4Ate−2t,

y′′′p (t) = 12Ae−2t − 8Ate−2t.

Note that when we plug into our equation, we have:

(12Ae−2t − 8Ate−2t)− 4(Ae−2t − 2Ate−2t) = e−2t.

Note that the te−2t term vanishes (why?), we now have:

8Ae−2t = e−2t,

so we have that A = 1/8, so our general solution is:

y(t) = C1 + C2e2t + C3e−2t +
1
8

te−2t .

(b) Again, we find the homogeneous case, which is y′′ + 36y = 0, whose characteristic equation is
r2 + 36 = 0, so the roots are ±6i, and the homogeneous solution is:

y(t) = C1 sin(6t) + C2 cos(6t).

Now, we need to form our guess as yp(t) = Aet sin(6t) + Bet cos(6t), we take the derivatives as:

y′p(t) = Aet sin(6t) + 6Aet cos(6t) + Bet cos(6t)− 6Bet sin(6t),

y′′p(t) = Aet sin(6t) + 12Aet cos(6t)− 36Aet sin(6t) + Bet cos(6t)− 12Bet sin(6t)− 36Bet cos(6t)

= (−35A − 12B)et sin(6t) + (12A − 35B)et cos(6t).

When plugged back into the differential equation, we have:

(−35A − 12B + 36A)et sin(6t) + (12A − 35B + 36B)et cos(6t) = et sin(6t).

Continues on the next page...
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Continued from last page.

Then, we have a system of linear equations as:A − 12B = 1,

12A + B = 0.

This solves into A = 1
145 and B = − 12

145 , so the general solution is:

y(t) = C1 sin(6t) + C2 cos(6t) +
1

145
et sin(6t)− 12

145
et cos(6t) .

At this moment, we highly encourage readers to consider why the particular guess did not have
an additional order, and why both sine and cosine are included when the derivative operators
are of even orders.
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6. Give the general solution to the following higher order differential equations:

y(6) − 2y′′′ + y = 0.

Solution:
First, we find the characteristic equation, which is a fairly easy perfect square:

r6 − 2r3 + 1 = (r3 − 1)2 = 0.

Hence, our concern follows to r being the solution to r3 = 1, with double multiplicity. In particular,
we have the roots being on the unit circle, with ζ3 being the 3rd root of unity, as:

ℜ(z)

ℑ(z)

1

ζ3

ζ2
3

Hence, the roots of the polynomial is:
r = 1, ζ3, ζ2

3,

each with multiplicity 2, where ζ3 and ζ2
3 can be expressed as:

ζ3 = cos
(

2π

3

)
+ i sin

(
2π

3

)
= −1

2
+ i

√
3

2
,

ζ2
3 = cos

(
4π

3

)
+ i sin

(
4π

3

)
= −1

2
− i

√
3

2
.

Hence, one set of solution is:

y1 = et,

y2 = e−t/2 cos

(√
3

2
t

)
,

y3 = e−t/2 sin

(√
3

2
t

)
,

where this set is already manipulated by Euler’s identity. By multiplicity of roots:

y4 = tet,

y5 = te−t/2 cos

(√
3

2
t

)
,

y6 = te−t/2 sin

(√
3

2
t

)
.

And the set is:

y = C1et + C2e−t/2 cos

(√
3

2
t

)
+ C3e−t/2 sin

(√
3

2
t

)

C4tet + C5te−t/2 cos

(√
3

2
t

)
+ C6te−t/2 sin

(√
3

2
t

)
.
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7. Let a system of differential equations of xi(t) be as follows:x′1 = 3x1 + 2x2, x1(1) = 0,

x′2 = x1 + 4x2, x2(1) = 2.

(a) Solve for the solution to the initial value problem.

(b) Identify and describe the stability at equilibrium(s).

Solution:

(a) Here, we denote x =
(

x1 x2
)⊺, so our system becomes:

x′ =

(
3 2
1 4

)
x, x(1) =

(
0
2

)
.

Here, the eigenvalues are solutions to:

det

(
3 − λ 2

1 4 − λ

)
= 0,

which simplifies to λ2 − 7λ + 10 = 0, and further gives λ1 = 2, λ2 = 5. Then, we look for
eigenvectors of the matrix:

• For λ1 = 2, we have

(
1 2
1 2

)
ξ1 = 0, which gives that ξ1 = x2

(
−2
1

)
.

• For λ2 = 5, we have

(
−2 2
1 −1

)
ξ2 = 0, which gives that ξ2 = x1

(
1
1

)
.

Now, the general solution must be:

x = C1

(
−2
1

)
e2t + C2

(
1
1

)
e5t,

and by plugging in the initial condition, we have:−2C1e2 + C2e5 = 0,

C1e2 + C2e5 = 2.

In which the solution is C1 = 2
3e2 and C2 = 4

3e5 , so the solution is:x1 = − 4
3 e2t−2 + 4

3 e5t−5,

x2 = 2
3 e2t−2 + 4

3 e5t−5.

(b) Now, we consider the equilibrium at x =
(
0 0
)⊺, in which we note that both eigenvalues are

positive, meaning that this is an unstable node .
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8. Let Id ∈ L(Rn) be the identity map in an n-dimensional Euclidean space, show that the following
equality holds for matrix exponential:

exp(Id) = e · Id .

Hint: Consider the matrix exponential and the Taylor expansion of exp(x).
Solution:

Proof. Here, we first note that, by definition:

Idk = Id for all k ∈ N,

thus, we want to expand the matrix exponential as follows:

exp(Id) =
∞

∑
k=0

1
k!

Idk

=
∞

∑
k=0

1
k!

Id

=

(
∞

∑
k=0

1
k!

)
Id .

Recall that the Taylor expansion of ex at 0 is:

ex ∼
∞

∑
k=0

1
k!

e0(x − 0)k =
∞

∑
k=0

1
k!

xk.

Evaluating the above equation at 1 gives that:
∞

∑
k=0

1
k!

= e1 = e,

and hence, we have the matrix exponential as:

exp(Id) = e · Id,

as desired.
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9. Let a system of differential equations be defined as follows, find its general solutions:

x′ =

1 0 4
1 1 3
0 4 1

 x, x ∈ R3.

Solution:
Again, we first find the eigenvalues of the equation, i.e.:

det

1 − λ 0 4
1 1 − λ 3
0 4 1 − λ

 = 0,

which is (1 − λ)3 + 16 − 12(1 − λ) = −λ3 + 3λ2 + 9λ + 5 = −(λ + 1)2(λ − 5) = 0.
Hence, the eigenvalues are λ1 = λ2 = −1 and λ3 = 5. Now, we look for eigenvectors.

• For λ1 = −1, we have

2 0 4
1 2 3
0 4 2

 ξ1 = 0, which is x

−4
−1
2

.

• For λ2 = −1, we have

2 0 4
1 2 3
0 4 2

 η =

−4
−1
2

, which is η =

 4x
x + 1

−2x − 1

 =

 0
1
−1

.

• For λ3 = 5, we have

−4 0 4
1 −4 3
0 4 −4

 ξ3 = 0, which is x

1
1
1

.

Hence, the solution is:

x = C1e−t

−4
−1
2

+ C2

te−t

−4
−1
2

+ e−t

 0
1
−1


+ C3e5t

1
1
1

 .
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10. Determine the periodic solution, if there are any, of the following system:
x′ = y +

x√
x2 + y2

(x2 + y2 − 2),

y′ = −x +
y√

x2 + y2
(x2 + y2 − 2).

Solution:
Here, we recall the formula converting between polar coordinates and Cartesian coordinates:x = r cos θ, y = r sin θ,

rr′ = xx′ + yy′, r2θ′ = xy′ − yx′.

Now, we are able to convert the system as:
rr′ = x

[
y +

x√
x2 + y2

(x2 + y2 − 2)

]
+ y

[
−x +

y√
x2 + y2

(x2 + y2 − 2)

]
,

r2θ′ = x

[
−x +

y√
x2 + y2

(x2 + y2 − 2)

]
− y

[
y +

x√
x2 + y2

(x2 + y2 − 2)

]
.

Here, by simple deductions, we trivially have:

rr′ =
x2 + y2√

x2 + y2
(x2 + y2 − 2) =

r2

r
(r2 − 2)⇝ r′ = r2 − 2.

r2θ′ = −x2 − y2 = −r2 ⇝ θ′ = −1.

Thereby, we consider the radius as:

r′ = r2 − 2 = (r −
√

2)(r +
√

2).

Hence, we note that the critical point is r =
√

2 (since r must be positive). Note that r′ < 0 for
0 < r <

√
2 and r′ > 0 for r >

√
2. Hence, this is an unstable limit cycle.

x

y
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