PILOT Activity Slides

Differential Equations

Johns Hopkins University

Summer 2025

Welcome to ODE PILOT Session!

PILOT Sessions varies for each PILOT leader, please check in with your leader.

Session Information

- Term: Summer 2025
- Meeting Schedule:
 - Dates: Between June 2rd and July 30th.
 - Location & Time: Check on course webpage.
- Leader: James Guo (email: sguo45@jhu.edu).

PILOT Webpage for ODEs

https://jhu-ode-pilot.github.io/SU25/

Resources Over Summer PILOT

Review sessions will be planned prior to exams. Review sets will be published in advanced.

• The review problem sets and review session information will be updated on the webpage.

Exam Number	Exam Date	Review Session Date
Midterm 1	June 21st	June 20th
Midterm 2	July 12th	July 11th
Final	July 25th	July 24th

If you are looking for more conceptual challenge, there is an **Additional Problem Set** on the webpage that you can try to consolidate your understanding on the course.

Ground Expectations

Summer PILOT works more like Office Hours, please join the zoom for extra help and review sessions.

Please be respectful and polite to other students!

If you found any of the contents a mental challenge or uncomfortable, please contact your leader or contact the Director of PILOT at Jenna Hoffman (jhoffm71@jhu.edu).

PALOT

Introducing yourselves

Let's get to know each other.

Introduction Questions

This section aims to help you introduce yourselves to the other students, please use a few minutes to think about the problems and introduce yourselves to your peers.

Think about yourself. Get ready to introduce yourself by addressing the following information:

- Your name,
- Your expected graduation year,
- Your major(s) and minor(s),
- Your interested area(s) in mathematics.

Outreach Problems

ODEs are useful tools at many places.

Here are some open questions

If you do not prefer tedious introductions, choose one of the following questions and give a creative answer.

What is one thing in your life, that you imagine ODEs can model. Explain why?

Use the function:

$$f(x) = 10\sin\left(\frac{x}{5}\right)\exp\left(-\frac{x}{50}\right)$$

to describe something.

If you can define a mathematical constant, what would you define?

Do you have a favorite theorem/formula/kernel?

Kernel

A good kernel $K_{\delta}(x)$ should be integrable (on \mathbb{R}) and satisfies the following for all $\delta > 0$:

2)
$$\int_{\mathbb{R}^d} |K_{\delta}(x)| dx \leq A$$
, and

• for every $\eta > 0$, $\int_{|x|>\eta} |K_{\delta}(x)| dx \to 0$ as $\delta \to 0$,

where *A* is a constant depending on δ .

Weierstrass Approximate Theorem guarantees uniform convergence for continuous functions, whereas *Fourier Convergence Theorem* only guarantees convergence for square integrable functions. Can you think of some places where you find trade-off situations?

In mathematics, we call a question *well-posed* if it aligns with the following properties:

- Existence: There exists at least one solution;
- Iniqueness: There exists at most one solution;
- Continuity: The solution depends continuously on the data, *i.e.*, a small error on initial/boundary data entails a small error on the solution.

Can you think of any "well-posed" questions?

Introduction 0

Ordering Game

Ordered Sets

The field of real numbers is ordered. Thus, each person can select a number, and thus determining an order for the group.

Of course, a partial order \prec must satisfy a few rules, and there are many other orders.

Dictionary Order

Of course, there are different ordering methods. For examples, you can look up *dictionary order* for complex numbers.

Preliminaries 0000 Introduction

Activities 00000000000

Ordering Game

Below are subsets of real numbers, select a number from a set:

•
$$\left\{0, 1, 2, -1, \frac{1}{2}, \sqrt{2}, \pi, e\right\},$$

• $\left\{\sin\frac{2k\pi}{15} : k \in \mathbb{Z} \land 0 \le k \le 14\right\},$
• $\mathbb{R}\setminus\mathbb{Q} \text{ (irrational numbers)},$
• $\left\{\det\begin{pmatrix}0 & 0\\0 & 0\end{pmatrix}, \det\begin{pmatrix}1 & 0\\0 & 1\end{pmatrix}, \det\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}, \det\begin{pmatrix}-1 & 0\\-1 & 2\end{pmatrix}, \det\begin{pmatrix}1 & 3\\4 & 7\end{pmatrix}, \det\begin{pmatrix}2 & 0\\0 & 7\end{pmatrix}, \det\begin{pmatrix}1 & 0\\4 & 3\end{pmatrix}, \det\begin{pmatrix}1 & -2\\12 & 13\end{pmatrix}\right\},$

Ordering Game (Cont.)

- $\mathbb{A} \cap \mathbb{R}$ (real, algebraic number),
- {f(-10), f(-2), f(0), f(3), f(5), f(20)}, where $f(x) = \int_0^\infty e^{-xt} \sin t dt$,

•
$$\mathbb{Q}(\sqrt{2},\sqrt{3}) := \left\{ a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} : a, b, c, d \in \mathbb{Q} \right\},$$

- {*n* : regular *n*-gon is constructible}, *Hint*: Regular *n*-gon is constructible $\iff \phi(n)$ is an integral power of 2,
- $\{F_n\}_n$ (Fibonacci sequence).

