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1 Preliminaries

1.1 Classifications of Differential Equations

Differential equations can be classified by their properties:

• Ordinary Differential Equations (ODEs) involves ordinary derivatives (
dy
dt

), while Partial Differential

Equations (PDEs) involves partial derivatives (
∂y
∂t

).

• Single equation involves one unknown and one equation, while System of equations involves multi-
ple unknowns and multiple equations.

• The order of the differential equation is the order of the highest derivatives term.

• Linear differential equations has only linear dependent on the function, while non-linear differential
equations has non-linear dependent on the function.
In particular, for any x, y in the vector space (could be functions) and C as constant, a linear map L
satisfies that:

L(Cx + y) = CL(x) + L(y).

1.2 Modeling Using ODEs

ODEs can be used for modeling. During modeling, it follows the following steps:

1. Construction of the Models,

2. Analysis of the Models,

3. Comparison of the Models with Reality.

1.3 Half Life Problems

The physics model for half life indicates the relationship between half life (τ) of a substance of amount
N(t) with initial amount N0 at a time t is:

N(t) = N0

(
1
2

) t
τ

,

where the rate of decay (λ) and half life (τ) are related by:

τ × λ = log 2.

2 First Order ODEs

2.1 Integrating Factor

For ODEs in form
dy
dt

+ a(t)y = b(t), the integrating factor is:

µ(t) = exp
(∫ t

0
a(s)ds

)
.
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2.2 Separable ODEs

For ODEs in form M(t) + N(y)
dy
dt

= 0, it can be separated by:

M(t)dt + N(y)dy = 0.

2.3 Existence and Uniqueness

The existence and uniqueness for Initial Value Problem (IVP) depend on cases:

• For an IVP in simple form: 
dy
dt

= a(t)y + b(t),

y(t0) = y0.

If a(t) and b(t) are continuous on an interval (α, β) and t0 ∈ (α, β). Then, there exists a uniqueness
solution y for (α, β) to the IVP.

• (Picard’s Theorem). For an IVP in general form:
dy
dt

= f (t, y),

y(t0) = y0.

For t0 ∈ I = (a, b), y0 ∈ J = (c, d), if f (t, y) and ∂ f
∂y (t, y) are continuous on interval I × J. Then, there

exists a unique solution on a smaller interval I′ × J′ ⊂ I × J, in which (t0, y0) ∈ I′ × J′.

2.4 Autonomous ODEs

Autonomous ODEs are in form of:
dy
dt

= f (y).

The stability (stable/semi-stable/unstable) of equilibrium can be determined by phase lines, i.e., the zeros
of the function f (t).

To factor a autonomous differential equation, we can always use the rational root test. Let the polynomial
with integer coefficients be defined as:

anxn + an−1xn−1 + · · ·+ a0 = 0,

then any rational root r = p/q such that p, q ∈ Z and gcd(p, q) = 1 satisfies that p|a0 and q|an.

2.5 Logistic Population Growth

The logistic population growth model with population (y), growing rate (r), and carrying capacity (k) is
given by: 

dy
dt

= r
(

1 − y
k

)
y,

y(0) = y0.

The solution for Logistic Population Growth is:

y(t) =
ky0

(k − y0)e−rt + y0
.
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2.6 Exactness Problem

The condition for a function in form M(x, y) + N(x, y)
dy
dx

= 0 to be exact is:

∂N
∂x

=
∂M
∂y

.

For solving Exact ODEs, either finding
∫

M(x, y)dx + h(y) or
∫

N(x, y)dy + h(x) and taking partials again
to fit gives the solution Ψ(x, y) = C.
For not exact cases, the integrating factor is:

µ(t) = exp
(∫ My − Nx

N
dx
)

or µ(t) = exp
(∫ Nx − My

M
dy
)

.

2.7 Bifurcation

When a differential equation contains some parameter C, its equilibriums would exhibit different behav-
ior, the bifurcation value is the critical value such that the equilibriums have different stability.

A bifurcation diagram is the vertical concatenation of phase portraits (C-y plot), in which the equilibriums
will be marked for respective values of C.

3 Second Order ODEs

3.1 Linear Homogeneous Cases

Consider the linear homogeneous ODE:

y′′ + py′ + qy = 0.

Its characteristic equation is:
r2 + pr + q = 0.

With solutions r1 and r2, the general solution is:

y(t) = c1er1t + c2er2t.

If the solutions r1 and r2 are complex, by Euler’s Formula (eit = cos t + i sin t), it can be written as
r1 = λ + iβ and r2 = λ − iβ, then the solution is:

y(t) = c1eλt cos(βt) + c2eλt sin(βt).

If the solutions r1 and r2 are repeated, the solution is:

y(t) = c1ert + c2tert.

3.2 Linear Independence

To form a fundamental set of solutions, the solutions need to be linearly independent, in which the
Wronskian (W) must be non-zero, meaning that:

W[y1, y2] = det

(
y1 y2

y′1 y′2

)
.
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3.3 Existence and Uniqueness Theorem

Consider IVP in form: y′′ + p(t)y′ + q(t)y = g(t),

y(t0) = y1, y′(t0) = y2.

The interval I containing t0 has p(t), q(t), and g(t) continuous on it. Then, there is a unique solution y(t)
and twice differentiable on the interval I.

3.4 Superposition Theorem

If y1(t) and y2(t) are solutions to l[y] = 0, then the solution c1y1(t) + c2y2(t) are also solutions for all
constants c1, c2 ∈ R.

3.5 Abel’s Formula

Consider the equation y′′ + py′ + qy = 0, the Wronskian for the solutions are:

W[y1, y2] = C exp
(
−
∫

pdt
)

,

where C is independent of t but depends on y1 and y2.

3.6 Reduction of Order

For non-linear second order homogeneous ODEs, when one solution y1(t) is given, the other solution is
in form:

y2(t) = u(t)× y1(t).

3.7 Non-homogeneous Cases

Let the differential equation be:
Ay′′(t) + By′(t) + Cy(t) = g(t),

where g(t) is a smooth function. Let y1(t) and y2(t) be the two homogeneous solutions, then the non-
homogeneous cases can be solved by the following approaches:

• Undetermined Coefficient: A guess of particular solution will be made based on the terms appearing
in the non-homogeneous part, or g(t). Some brief strategies are:

Non-homogeneous Components in g(t) Guess
Polynomials: ∑d

i=0 aiti ∑d
i=0 Citi

Trig. Functions: sin(at) and cos(at) C1 sin(ax) + C2 sin(ax)
Exponential Functions: eat Ceat

Note that the guess are additive and multiplicative. Moreover, if the non-homogeneous part is
already appearing in the homogeneous solutions, an extra t needs to be multiplied on the non-
homogeneous case.

• Variation of Parameters: The particular solution is:

yp = y1(t)
∫ −y2(t) · g(t)

W
dt + y2(t)

∫ y1(t) · g(t)
W

dt.
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4 Higher Order ODEs

4.1 Existence and Uniqueness Theorem

For higher order IVP in form:y(n) + Pn−1(t)y(n−1) + · · ·+ P1(t)y′ + P0(t)y = g(t),

y(t0) = y0, y′(t0) = y1, · · · , y(n−1)(t0) = yn−1.

If P0(t), P1(t), · · · , Pn−1(t), and g(t) are continuous on an interval I containing t0. Then there exists a
unique solution for y(t) on I.

4.2 Homogeneous Cases

The higher order homogeneous ODEs are in form:

y(n) + an−1y(n−1) + · · ·+ a1y′ + a0y = 0.

By computing the characteristic equation:

rn + an−1rn−1 + · · ·+ a1r + a0 = 0.

With solutions r1, r2, · · · , rn, the general solution is:

y(t) = c1er1t + c2er2t + · · ·+ cnernt.

Note that the complex solutions can still be converted to sines and cosines, while repeated roots multiply
a t on the repeated solutions.

4.3 Linear Independence

To obtain the fundamental set of solutions, the Wronskian (W) must be non-zero, where Wronskian is:

W[y1, y2, · · · , yn] = det


y1 y2 · · · yn

y′1 y′2 · · · y′n
...

...
. . .

...

y(n)1 y(n)2 · · · y(n)n

 .

• Alternation to the Wronskian: By definition of linear independence, f1, f2, · · · , fn are independent
on I is equivalent to the expression where k1 f1 + k2 f2 + · · ·+ kn fn = 0 if and only if ki = 0.

4.4 Abel’s Formula

For higher order ODEs in the form of:y(n) + Pn−1(t)y(n−1) + · · ·+ P1(t)y′ + P0(t)y = g(t),

y(t0) = y0, y′(t0) = y1, · · · , y(n−1)(t0) = yn−1.

Its Wronskian is:
W[y1, y2, · · · , yn] = C exp

(∫ t

0
Pn−1(s)ds

)
,

where C is independent of t but depend on y1, y2, · · · , yn.
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4.5 Non-Homogeneous Cases

Let the differential equation be:

L[y(n)(t), y(n−1)(t), · · · , y(t)] = g(t),

where g(t) is a smooth function. Let y1(t), y2(t), · · · , yn(t) be all homogeneous solutions, then the non-
homogeneous cases can be solved by the following approaches:

• Undetermined Coefficient: Same as in degree 2, a guess of particular solution will be made based
on the terms appearing in the non-homogeneous part, or g(t). Some brief strategies are:

Non-homogeneous Components in g(t) Guess
Polynomials: ∑d

i=0 aiti ∑d
i=0 Citi

Trig. Functions: sin(at) and cos(at) C1 sin(ax) + C2 sin(ax)
Exponential Functions: eat Ceat

Note that the guess are additive and multiplicative. Moreover, if the non-homogeneous part is
already appearing in the homogeneous solutions, an extra t needs to be multiplied on the non-
homogeneous case.

• Variation of Parameters: The particular solution is:

yp = y1(t)
∫ W1g

W
dt + y2(t)

∫ W2g
W

dt + · · ·+ yn(t)
∫ Wng

W
dt,

where Wi is defined to be the Wronskian with the i-th column alternated into


0
...
0
1

.

5 System of First Order Linear ODEs

5.1 Solving for Eigenvalues and Eigenvectors

For a given first order linear ODE in form:
x′ = Ax,

the eigenvalues can be found as the solutions to the characteristic equation:

det(A − Ir) = 0,

and the eigenvectors can be then found by solving the linear system that:

(A − Ir) · ξ = 0.

The solution to the ODE is:

x = c1ξ(1)er1t + c2ξ(2)er2t + · · ·+ cnξ(n)ernt.

5.2 Linear Independence

Let the solutions form the fundamental matrix Ψ(t), thus the Wronskian is:

det (Ψ(t)) .

The system is linearly independent if the Wronskian is non-zero.
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5.3 Abel’s Formula

For the linear system in form:
x′ = Ax,

the Wronskian can be found by the trace of A, which is the sum of the diagonals, that is:

W = Ce
∫

trace Adt = Ce
∫
(A1,1+A2,2+···+An,n)dt.

5.4 Repeated Eigenvalues

For repeated eigenvalue r with only one eigenvector, if a given a solution is x(1) = ξert, the other solution
would be:

x(2) = ξtert + ηert,

where (A − Ir) · η = ξ.

5.5 Phase Portraits

Given a linear system, we would want to visualize the trajectories via phase portraits of where an initial
condition would be guided to.

In particular, we can sketch the linear system of R2 in terms of phase portraits given the eigenvalues and
eigenvectors.

• For a node graph, we have it as (directions might vary):

x1

x2

x1

x2

• For a spiral/center graph, we have it as (directions might vary):

x1

x2

x1

x2

Page 7

https://jhu-ode-pilot.github.io/


P ILOT Theorems and Formulas Booklet Differential Equations

• For repeated eigenvalues, the solution depends is (directions might vary):

x1

x2

5.6 Fundamental Matrix

The exponential of Matrix is defined to be:

exp(tA) = I +
∞

∑
n=1

(tA)n

n!
,

where An is the result of n square matrices of A multiplying themselves.
The special case of fundamental matrix is defined to be Φ where:Φ′ = A · Φ,

Φ(0) = I,

so that the fundamental matrix Φ can be calculated by:

Φ(t) = Ψ(t) · Ψ−1(0).

5.7 Non-homogeneous Cases

Let the differential equation be:
x′(t)− Ax(t) = g(t),

where g(t) is a smooth vector-valued function. Let ϕ be its fundamental matrix, then the non-homogeneous
cases can be solved by the following approaches:

• Diagonalization: Diagonalization utilizes T as the matrix of eigenvectors and D as the diagonal
matrix of eigenvalues. Accordingly, let x = Ty.
Then, x′ = Ty′ = ATy + g = TDy + g, which means that y′ = Dy + T−1g and the differential
equation is now degenerated.

• Undetermined Coefficient: Same as in single equations, a guess of particular solution will be made
based on the terms appearing in the non-homogeneous part, or g(t). Some brief strategies are:

Non-homogeneous Components in g(t) Guess
Polynomials: ∑d

i=0 aiti ∑d
i=0 citi

Trig. Functions: a1 sin(b1t) and a2 cos(b2t) c1 sin(b1x) + c2 sin(b2x)
Exponential Functions: aebt cebt
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Note that the guess are additive and multiplicative. Moreover, if the non-homogeneous part is
already appearing in the homogeneous solutions, an extra t needs to be multiplied on the non-
homogeneous case.

• Variation of Parameters: Variation of parameters utilizes that:

Ψ · u′ = g,

where this equation can be solved by:

u′
i =

Wi
det(Ψ)

,

where Wi is defined by the Wronskian of the matrix replacing the i-th column with g(t).
There, the particular solution is:

xp = Ψ · u.

6 Non-linear Systems

6.1 Linear Approximation

For non-linear system x′ = (F
G)x, if F, G ∈ C2, i.e. locally linear, the approximation at critical point (x0, y0)

is: (
x − x0

y − y0

)
= J(x0, y0) ·

(
x − x0

y − y0

)
,

where Jacobian is:

J(x0, y0) =

(
Fx(x0, y0) Fy(x0, y0)

Gx(x0, y0) Gy(x0, y0)

)
.

6.2 Autonomous Systems

When x =

(
F(y)
G(x)

)
, it can be solved implicitly for:

dy
dx

=
G(x)
F(y)

.

6.3 Stability

For linearized system with 2 eigenvalues r1, r2, the following applies:

1. If r1, r2 ∈ R and r1 ̸= r2: r1 < r2 < 0 indicates an asymptotically stable node, r1 < 0 < r2 indicates a
mostly unstable saddle, and 0 < r1 < r2 indicates an unstable node. Note that these will not change
for the non-linear case.

2. If r1 = r2: r1 = r2 < 0 indicates a asymptotically stable node and r1 = r2 > 0 indicates an unstable
node. The stability preserves but the shape either node or spiral.

3. If r1, r2 ∈ C and Re(r1) = Re(r2) ̸= 0: Re(r1) = Re(r2) > 0 indicates an unstable spiral and
Re(r1) = Re(r2) < 0 indicates an asymptotically stable spiral. Note that these will not change for
the non-linear case.
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4. If r1, r2 ∈ C and Re(r1) = Re(r2) = 0: That indicates a stable center. In the non-linear case, the shape
is either spiral or center, but the stability is in-determinant.

The stability can be concluded as follows:

Eigenvalues
Linear System Nonlinear System

Type Stability Type Stability
Eigenvalues are λ1 and λ2

0 < λ1 < λ2 Node Unstable Node Unstable

λ1 < λ2 < 0 Node Asymptotically
Stable

Node Asymptotically
Stable

λ1 < 0 < λ2 Saddle Point Unstable Saddle Point Unstable

λ1 = λ2 > 0 Node Unstable Node or Spiral
Point

Unstable

λ1 = λ2 < 0 Node Asymptotically
Stable

Node or Spiral
Points

Asymptotically
Stable

Eigenvalues are λ1 = α + iβ and λ2 = α − iβ

α > 0 Spiral Point Unstable Spiral Point Unstable

α = 0 Center Stable Center or
Spiral Point

Indeterminate

α < 0 Spiral Point Asymptotically
Stable

Spiral Point Asymptotically
Stable

6.4 Limit Cycles

A closed trajectory or periodic solution repeats back to itself with period τ:(
x(t + τ)

y(t + τ)

)
=

(
x(t)
y(t)

)
.

Closed trajectories with either side converging to/diverging from the solution is a limit cycle.

6.5 Conversion to Polar Coordinate

A Cartesian coordinate can be converted by:

x = r cos θ,

y = r sin θ,

rr′ = xx′ + yy′,

r2θ′ = xy′ − yx′.

For a linear system x =

(
F(x, y)
G(x, y)

)
with F, G ∈ C1:

1. A closed trajectory of the system must enclose at least 1 critical point.

2. If it only encloses 1 critical point, then that critical point cannot be saddle point.

3. If there are no critical points, there are no closed trajectories.
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4. If the unique critical point is saddle, there are no trajectories.

5. For a simple connected domain D in the xy-plane with no holes. If Fx + Gy had the same sign
throughout D, then there is no closed trajectories in D.

7 Laplace Transformation

7.1 Properties of Laplace Transformation:

The Laplace Transformation of a function f is defined as:

L{ f (t)} = F(s) =
∫ ∞

0
e−st f (t)dt

Note that Laplace Transformation can be used on non-continuous functions by utilizing step functions.
Laplace Transformation has the following properties:

1. Laplace Transformation is a linear operator:

L{ f + λg} = L{ f }+ λL{g}

2. Laplace Transformation for derivatives:

L{ f ′(t)} = sL{ f (t)} − f (0),

L{ f ′′(t)} = s2L{ f (t)} − s f (0)− f ′(0),

...

L{ f (n)(t)} = snF(s)− sn−1 f (0)− · · · − f (n−1)(0).

3. First Shifting Theorem:
L{ect f (t)} = F(s − c).

The Laplace Transformations can be used for solving IVP, where the inverse helps to find the original
function prior to transformation.

7.2 Elementary Laplace Transformations

The Laplace Transformations for elementary functions are given in the following table, note that they can
still be calculated by its definition:

f (t) = L−1{F(s)} F(s) = L{ f (t)}

1
1
s

, s > 0

eat 1
s − a

, s > a

tn, n ∈ Z>0
n!

sn+1 , s > 0
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Cont.

f (t) = L−1{F(s)} F(s) = L{ f (t)}
sin(at)

a
s2 + a2 , s > 0

cos(at)
s

s2 + a2 , s > 0

sinh(at)
a

s2 − a2 , s > 0

cosh(at)
s

s2 − a2 , s > 0

f (ct)
1
c

F
( s

c

)

7.3 Step Functions:

The step functions are defined by:

uc(t) = u(t − c) =

0, t < c,

1, t ≥ c.

And the Laplace Transformations of the step function is:

L{uc(t)} =
e−cs

s
.

The step function forms the Second Shifting Theorem:

L{uc(t) f (t − c)} = e−csF(s).

7.4 Impulse Functions

The idealized unit impulse function δ(t), or Dirac delta function, satisfies the properties that:

δ(t) = 0 for t ̸= 0 and
∫ ∞

−∞
δ(t)dt = 1.

There is no ordinary function satisfying the idealized unit impulse function, so it is a generalized function.
A unit impulse at an arbitrary point t = t0, denoted by δ(t − t0), follows that:

δ(t) = 0 for t ̸= t0 and
∫ ∞

−∞
δ(t − t0)dt = 1.

The Laplace Transformation of the impulse function is:

L{δ(t − c)} = e−cs.

7.5 Convolution

The convolution of f and g, denoted ( f ∗ g), is defined as:

( f ∗ g)(t) =
∫ t

0
f (t − τ)g(τ)dτ =

∫ t

0
f (τ)g(t − τ)dτ.

The convolution f ∗ g has many of the properties of ordinary multiplication:

1. Commutativity: f ∗ g = g ∗ f ;
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2. Distributivity: f ∗ (g + h) = f ∗ g + f ∗ h;

3. Associativity: ( f ∗ g) ∗ h = f ∗ (g ∗ h);

4. Zero Property: f ∗ 0 = 0 ∗ f = 0, where 0 is a function that maps any input to 0.

The Laplace Transformation of the convolution of f and g is:

L{( f ∗ g)(t)} = F(s)G(s).

8 Series Solutions to Second-Order Linear Equations

8.1 Power Series

A power series is an infinite series in the form:
∞

∑
n=0

an(x − c)n = a0 + a1(x − c) + a2(x − c)2 + · · · ,

where an is the coefficient for term n and c is the center of the approximation.

A power series ∑∞
n=0 an(x − x0)

n converge at a point x if:

lim
N→∞

N

∑
n=0

an(x − x0)
n exists for that x.

A power series converges pointwise on X if it converges on every x ∈ X.

A power series converges absolutely at a point x if the power series:
∞

∑
n=0

|an(x − x0)
n| =

∞

∑
n=0

|an||x − x0|n converges.

Note that absolute converges implies convergence, but the converse is not true.
Here are some properties of series:

1. (Ratio test). If an ̸= 0, and if for a fixed value of x, and:

lim
n→∞

∣∣∣∣ an+1(x − x0)
n+1

xn(x − x0)n

∣∣∣∣ = |x − x0| lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = |x − x0|L,

then the power series converges absolutely at x if |x − x0|L < 1 and diverges if |x − x0|L > 1.

2. (Monotonic property). If the power series ∑∞
n=0 an(x − x0)

n converges at x = x1, then it converges
absolutely for |x − x0| < |x1 − x0|. If it diverges at x = x1, then it diverges for |x − x0| > |x1 − x0|.

3. (Radius of convergence). Let ρ > 0 be such that ∑∞
n=0 an(x − x0)

n converges absolutely for |x − x0| <
ρ and diverges for |x − x0| > ρ, then ρ is the radius of convergence and (x0 − ρ, x0 + ρ) is the interval
of convergence.

Also, we note that power series can be added or subtracted term-wise. They can also be multiplied and
divided by having divisions of terms.

Recall that by Taylor theorem, suppose f ∈ C∞, then we can form the Taylor polynomial as a power series,
with coefficient:

an =
f (n)(x0)

n!
.
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In particular, if f has a Taylor polynomial at x0 with a positive radius of convergence, we say the series is
analytic at x0.

8.2 Ordinary Point

Here, we are thinking of the second order homogeneous differential equation, namely:

P(x)
d2y
dx2 + Q(x)

dy
dx

+ R(x)y = 0.

Additionally, we suppose that P, Q, and R are polynomials and have no factor common factor (x − c).
Thus, we have P(x0) ̸= 0 being an ordinary point. When P(x0) = 0, it is a singular point (or pole).

When we generalize, we will have:
d2y
dx2 + p(x)

dy
dx

+ q(x)y = 0,

where p and q are any functions. Similarly, consider x0 where both p and q are analytic, x0 is ordinary,
otherwise, it is singular. Here, we say p(x) has singularity of a pole at x0 of order n if:

(x − x0)
n p(x) is analytic at x0.

Assuming absolute convergence, one can apply the derivative operator on the sequence, that is:

d
dx

[
lim

N→∞

N

∑
n=0

an(x − x0)
n

]
= lim

N→∞

[
d

dx

N

∑
n=0

an(x − x0)
n

]
= lim

N→∞

N

∑
n=1

ann(x − x0)
n−1.

Often, we we apply the derivative operator, we will notice some recurrence relation, that is the successive
coefficients can be evaluated one by one.

In particular, when we have a power series:

φ(x) =
∞

∑
n=0

an(x − x0)
n,

by taking the m-th derivative and evaluating it at 0, we will have:
dm φ

dxm (x0) = m!am.

8.3 Euler Equations

In the section, we go back to the focus of:

P(x)y′′ + Q(x)y′ + R(x)y = 0,

where P, Q, R are polynomials with no common factors.

For the Euler’s equation, we consider the differential equation in the form:

x2y′′ + αxy′ + βy = 0.

Then, |x|r is a solution to the above differential equation if r is a solution to r(r − 1) + αr + β = 0.
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Let r1, r2 be the roots of r(r − 1) + αr + β = 0, then the solution to the differential equation can be
represented by:

• When r1, r2 ∈ R and r1 ̸= r2, then:

y(x) = c1|x|r1 + c2|x|r2 .

• When r1, r2 ∈ R and r := r1 = r2, then:

y(x) = c1|x|r + c2 log |x| · |x|r.

• When r1, r2 = λ + iµ ∈ C and µ ̸= 0, then:

y(x) = c1|x|λ cos
(
µ log |x|

)
+ c2|x|λ sin

(
µ log |x|

)
.

8.4 Regular Singular Point

Now, we want to research on the case when x0 is a regular singular point, that is for equation:

y′′ + p(x)y′ + q(x)y = 0,

and x0 satisfies that:

1. x0 is a singular point, and

2. p(x) has a pole of order 1 and q(x) has a pole of order no more than 2.

A singular point that is not regular is a irregular singular point.

Without loss of generality, we may horizontally shift the equation to obtain that x = 0 is a regular singular
point. Then, we may write:

xp(x) =
∞

∑
n=0

pnxn and x2q(x) =
∞

∑
n=0

qnxn

on some interval |x| < ρ within the radius of convergence. Hence, we may multiply x2 on both side,
giving us that:

x2y′′ + x
(

xp(x)
)︸ ︷︷ ︸

p̃(x)

y′ +
(

x2q(x)
)︸ ︷︷ ︸

q̃(x)

y = 0,

in which p̃ and q̃ are analytic at x = 0. Then, we will be able to Euler Equations to solve for the differential
equation with respect to p̃ and q̃.

9 Numerical Methods

9.1 Euler’s Method

The numerical approximation focuses on first-order initial value problem:
dy
dt

= f (t, y),

y(t0) = y0.

By the Existence and Uniqueness Theorem, a unique solution exists for some rectangular region containing
(t0, y0) when f and ∂ f

∂y are continuous. With this foundation, we may apply Euler’s method on such
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region. (Note that out of the region, the approximation would not be accurate.)
Euler’s method recursively applies the following function:

yn+1 = yn + f (tn, yn)(tn+1 − tn), n = 0, 1, 2, · · · ,

and when the steps are constrained to be a constant h, we have:

yn+1 = yn + h f (tn, yn), n = 0, 1, 2, · · · .

Typically, Euler’s method incurs error, whereas some typical issues are:

1. When the step size h is too big, the error is significant.

2. When the step size h is too small, the cost of calculation is expensive.

3. The computation does address the asymptotic behaviors.

4. When the vector field has steep components, the approximation differs more.

9.2 Generalization on Euler’s Method

Euler’s method can be analyzed by using the Fundamental Theorem of Calculus, that is:

y(t) = y(tn) +
∫ t

tn
f
(
s, y(s)

)
ds

≈ y(tn) + ∑
t0≤ti<ti+1≤t

f (ti, yn)(ti+1 − ti),

in which we may establish the improved Euler’s Method, by:

yn+1 = yn + h
(

f (tn, yn) + f (tn+1, yn + h f (tn, yn))

2

)
,

by considering the trapezoid approach for Riemann sum.
Since the f (t, y) depends only on t and not on y, then solving differential equation reduced from y′ =
f (t, y) to integrating f (t), which makes the improved Euler’s Method into:

yn+1 = yn +
h
2
(

f (tn) + f (tn + h)
)
.
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